-
Notifications
You must be signed in to change notification settings - Fork 0
/
Stocker.py
982 lines (718 loc) · 39 KB
/
Stocker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
# Quandl for financial analysis, pandas and numpy for data manipulation
# fbprophet for additive models, #pytrends for Google trend data
import yfinance as yf
#import quandl
import pandas as pd
import numpy as np
import fbprophet
import pytrends
from pytrends.request import TrendReq
import yfinance
# matplotlib pyplot for plotting
import matplotlib.pyplot as plt
import matplotlib
# Class for analyzing and (attempting) to predict future prices
# Contains a number of visualizations and analysis methods
class Stocker():
# Initialization requires a ticker symbol
def __init__(self, ticker, stock, start, end):
# Enforce capitalization
#ticker = ticker.upper()
# Symbol is used for labeling plots
self.symbol = ticker
# Use Personal Api Key
# quandl.ApiConfig.api_key = 'YourKeyHere'
# Retrieval the financial data
#try:
# stock = yf.download(ticker, start=start, end=end)
#except Exception as e:
# print('Error Retrieving Data.')
# print(e)
# return
# Set the index to a column called Date
stock = stock.reset_index(level=0)
# Columns required for prophet
stock['ds'] = stock['Date']
if ('Adj. Close' not in stock.columns):
stock['Adj. Close'] = stock['Close']
stock['Adj. Open'] = stock['Open']
stock['y'] = stock['Adj. Close']
stock['Daily Change'] = stock['Adj. Close'] - stock['Adj. Open']
# Data assigned as class attribute
self.stock = stock.copy()
# Minimum and maximum date in range
self.min_date = min(stock['Date'])
self.max_date = max(stock['Date'])
# Find max and min prices and dates on which they occurred
self.max_price = np.max(self.stock['y'])
self.min_price = np.min(self.stock['y'])
self.min_price_date = self.stock[self.stock['y'] == self.min_price]['Date']
self.min_price_date = self.min_price_date[self.min_price_date.index[0]]
self.max_price_date = self.stock[self.stock['y'] == self.max_price]['Date']
self.max_price_date = self.max_price_date[self.max_price_date.index[0]]
# The starting price (starting with the opening price)
self.starting_price = float(self.stock.loc[0, 'Adj. Open'])
# The most recent price
self.most_recent_price = float(self.stock.loc[self.stock.index[-1], 'y'])
# Whether or not to round dates
self.round_dates = True
# Number of years of data to train on
self.training_years = 3
# Prophet parameters
# Default prior from library
self.changepoint_prior_scale = 0.05
self.weekly_seasonality = False
self.daily_seasonality = False
self.monthly_seasonality = True
self.yearly_seasonality = True
self.changepoints = None
print('{} Stocker Initialized. Data covers {} to {}.'.format(self.symbol,
self.min_date,
self.max_date))
"""
Make sure start and end dates are in the range and can be
converted to pandas datetimes. Returns dates in the correct format
"""
def handle_dates(self, start_date, end_date):
# Default start and end date are the beginning and end of data
if start_date is None:
start_date = self.min_date
if end_date is None:
end_date = self.max_date
try:
# Convert to pandas datetime for indexing dataframe
start_date = pd.to_datetime(start_date)
end_date = pd.to_datetime(end_date)
except Exception as e:
print('Enter valid pandas date format.')
print(e)
return
valid_start = False
valid_end = False
# User will continue to enter dates until valid dates are met
while (not valid_start) & (not valid_end):
valid_end = True
valid_start = True
if end_date < start_date:
print('End Date must be later than start date.')
start_date = pd.to_datetime(input('Enter a new start date: '))
end_date= pd.to_datetime(input('Enter a new end date: '))
valid_end = False
valid_start = False
else:
if end_date > self.max_date:
print('End Date exceeds data range')
end_date= pd.to_datetime(input('Enter a new end date: '))
valid_end = False
if start_date < self.min_date:
print('Start Date is before date range')
start_date = pd.to_datetime(input('Enter a new start date: '))
valid_start = False
return start_date, end_date
"""
Return the dataframe trimmed to the specified range.
"""
def make_df(self, start_date, end_date, df=None):
# Default is to use the object stock data
if not df:
df = self.stock.copy()
start_date, end_date = self.handle_dates(start_date, end_date)
# keep track of whether the start and end dates are in the data
start_in = True
end_in = True
# If user wants to round dates (default behavior)
if self.round_dates:
# Record if start and end date are in df
if (start_date not in list(df['Date'])):
start_in = False
if (end_date not in list(df['Date'])):
end_in = False
# If both are not in dataframe, round both
if (not end_in) & (not start_in):
trim_df = df[(df['Date'] >= start_date) &
(df['Date'] <= end_date)]
else:
# If both are in dataframe, round neither
if (end_in) & (start_in):
trim_df = df[(df['Date'] >= start_date) &
(df['Date'] <= end_date)]
else:
# If only start is missing, round start
if (not start_in):
trim_df = df[(df['Date'] > start_date) &
(df['Date'] <= end_date)]
# If only end is imssing round end
elif (not end_in):
trim_df = df[(df['Date'] >= start_date) &
(df['Date'] < end_date)]
else:
valid_start = False
valid_end = False
while (not valid_start) & (not valid_end):
start_date, end_date = self.handle_dates(start_date, end_date)
# No round dates, if either data not in, print message and return
if (start_date in list(df['Date'])):
valid_start = True
if (end_date in list(df['Date'])):
valid_end = True
# Check to make sure dates are in the data
if (start_date not in list(df['Date'])):
print('Start Date not in data (either out of range or not a trading day.)')
start_date = pd.to_datetime(input(prompt='Enter a new start date: '))
elif (end_date not in list(df['Date'])):
print('End Date not in data (either out of range or not a trading day.)')
end_date = pd.to_datetime(input(prompt='Enter a new end date: ') )
# Dates are not rounded
trim_df = df[(df['Date'] >= start_date) &
(df['Date'] <= end_date.date)]
return trim_df
# Basic Historical Plots and Basic Statistics
def plot_stock(self, start_date=None, end_date=None, stats=['Adj. Close'], plot_type='basic'):
self.reset_plot()
if start_date is None:
start_date = self.min_date
if end_date is None:
end_date = self.max_date
stock_plot = self.make_df(start_date, end_date)
colors = ['r', 'b', 'g', 'y', 'c', 'm']
for i, stat in enumerate(stats):
stat_min = min(stock_plot[stat])
stat_max = max(stock_plot[stat])
stat_avg = np.mean(stock_plot[stat])
date_stat_min = stock_plot[stock_plot[stat] == stat_min]['Date']
date_stat_min = date_stat_min[date_stat_min.index[0]]
date_stat_max = stock_plot[stock_plot[stat] == stat_max]['Date']
date_stat_max = date_stat_max[date_stat_max.index[0]]
print('Maximum {} = {:.2f} on {}.'.format(stat, stat_max, date_stat_max))
print('Minimum {} = {:.2f} on {}.'.format(stat, stat_min, date_stat_min))
print('Current {} = {:.2f} on {}.\n'.format(stat, self.stock.loc[self.stock.index[-1], stat], self.max_date))
# Percentage y-axis
if plot_type == 'pct':
# Simple Plot
plt.style.use('fivethirtyeight');
if stat == 'Daily Change':
plt.plot(stock_plot['Date'], 100 * stock_plot[stat],
color = colors[i], linewidth = 2.4, alpha = 0.9,
label = stat)
else:
plt.plot(stock_plot['Date'], 100 * (stock_plot[stat] - stat_avg) / stat_avg,
color = colors[i], linewidth = 2.4, alpha = 0.9,
label = stat)
plt.xlabel('Date'); plt.ylabel('Change Relative to Average (%)'); plt.title('%s Stock History' % self.symbol);
plt.legend(prop={'size':10})
plt.grid(color = 'k', alpha = 0.4);
# Stat y-axis
elif plot_type == 'basic':
plt.style.use('fivethirtyeight');
plt.plot(stock_plot['Date'], stock_plot[stat], color = colors[i], linewidth = 3, label = stat, alpha = 0.8)
plt.xlabel('Date'); plt.ylabel('US $'); plt.title('%s Stock History' % self.symbol);
plt.legend(prop={'size':10})
plt.grid(color = 'k', alpha = 0.4);
plt.show();
# Reset the plotting parameters to clear style formatting
# Not sure if this should be a static method
@staticmethod
def reset_plot():
# Restore default parameters
matplotlib.rcdefaults()
# Adjust a few parameters to liking
matplotlib.rcParams['figure.figsize'] = (8, 5)
matplotlib.rcParams['axes.labelsize'] = 10
matplotlib.rcParams['xtick.labelsize'] = 8
matplotlib.rcParams['ytick.labelsize'] = 8
matplotlib.rcParams['axes.titlesize'] = 14
matplotlib.rcParams['text.color'] = 'k'
# Method to linearly interpolate prices on the weekends
def resample(self, dataframe):
# Change the index and resample at daily level
dataframe = dataframe.set_index('ds')
dataframe = dataframe.resample('D')
# Reset the index and interpolate nan values
dataframe = dataframe.reset_index(level=0)
dataframe = dataframe.interpolate()
return dataframe
# Remove weekends from a dataframe
def remove_weekends(self, dataframe):
# Reset index to use ix
dataframe = dataframe.reset_index(drop=True)
weekends = []
# Find all of the weekends
for i, date in enumerate(dataframe['ds']):
if (date.weekday()) == 5 | (date.weekday() == 6):
weekends.append(i)
# Drop the weekends
dataframe = dataframe.drop(weekends, axis=0)
return dataframe
# Calculate and plot profit from buying and holding shares for specified date range
def buy_and_hold(self, start_date=None, end_date=None, nshares=1):
self.reset_plot()
start_date, end_date = self.handle_dates(start_date, end_date)
# Find starting and ending price of stock
start_price = float(self.stock[self.stock['Date'] == start_date]['Adj. Open'])
end_price = float(self.stock[self.stock['Date'] == end_date]['Adj. Close'])
# Make a profit dataframe and calculate profit column
profits = self.make_df(start_date, end_date)
profits['hold_profit'] = nshares * (profits['Adj. Close'] - start_price)
# Total profit
total_hold_profit = nshares * (end_price - start_price)
print('{} Total buy and hold profit from {} to {} for {} shares = ${:.2f}'.format
(self.symbol, start_date, end_date, nshares, total_hold_profit))
# Plot the total profits
plt.style.use('dark_background')
# Location for number of profit
text_location = (end_date - pd.DateOffset(months = 1))
# Plot the profits over time
plt.plot(profits['Date'], profits['hold_profit'], 'b', linewidth = 3)
plt.ylabel('Profit ($)'); plt.xlabel('Date'); plt.title('Buy and Hold Profits for {} {} to {}'.format(
self.symbol, start_date, end_date))
# Display final value on graph
plt.text(x = text_location,
y = total_hold_profit + (total_hold_profit / 40),
s = '$%d' % total_hold_profit,
color = 'g' if total_hold_profit > 0 else 'r',
size = 14)
plt.grid(alpha=0.2)
plt.show();
# Create a prophet model without training
def create_model(self):
# Make the model
model = fbprophet.Prophet(daily_seasonality=self.daily_seasonality,
weekly_seasonality=self.weekly_seasonality,
yearly_seasonality=self.yearly_seasonality,
changepoint_prior_scale=self.changepoint_prior_scale,
changepoints=self.changepoints)
if self.monthly_seasonality:
# Add monthly seasonality
model.add_seasonality(name = 'monthly', period = 30.5, fourier_order = 5)
return model
# Graph the effects of altering the changepoint prior scale (cps)
def changepoint_prior_analysis(self, changepoint_priors=[0.001, 0.05, 0.1, 0.2], colors=['b', 'r', 'grey', 'gold']):
# Training and plotting with specified years of data
train = self.stock[(self.stock['Date'] > (max(self.stock['Date']) - pd.DateOffset(years=self.training_years)))]
# Iterate through all the changepoints and make models
for i, prior in enumerate(changepoint_priors):
# Select the changepoint
self.changepoint_prior_scale = prior
# Create and train a model with the specified cps
model = self.create_model()
model.fit(train)
future = model.make_future_dataframe(periods=180, freq='D')
# Make a dataframe to hold predictions
if i == 0:
predictions = future.copy()
future = model.predict(future)
# Fill in prediction dataframe
predictions['%.3f_yhat_upper' % prior] = future['yhat_upper']
predictions['%.3f_yhat_lower' % prior] = future['yhat_lower']
predictions['%.3f_yhat' % prior] = future['yhat']
# Remove the weekends
predictions = self.remove_weekends(predictions)
# Plot set-up
self.reset_plot()
plt.style.use('fivethirtyeight')
fig, ax = plt.subplots(1, 1)
# Actual observations
ax.plot(train['ds'], train['y'], 'ko', ms = 4, label = 'Observations')
color_dict = {prior: color for prior, color in zip(changepoint_priors, colors)}
# Plot each of the changepoint predictions
for prior in changepoint_priors:
# Plot the predictions themselves
ax.plot(predictions['ds'], predictions['%.3f_yhat' % prior], linewidth = 1.2,
color = color_dict[prior], label = '%.3f prior scale' % prior)
# Plot the uncertainty interval
ax.fill_between(predictions['ds'].dt.to_pydatetime(), predictions['%.3f_yhat_upper' % prior],
predictions['%.3f_yhat_lower' % prior], facecolor = color_dict[prior],
alpha = 0.3, edgecolor = 'k', linewidth = 0.6)
# Plot labels
plt.legend(loc = 2, prop={'size': 10})
plt.xlabel('Date'); plt.ylabel('Stock Price ($)'); plt.title('Effect of Changepoint Prior Scale');
plt.show()
# Basic prophet model for specified number of days
def create_prophet_model(self, days=0, resample=False):
self.reset_plot()
model = self.create_model()
# Fit on the stock history for self.training_years number of years
stock_history = self.stock[self.stock['Date'] > (self.max_date - pd.DateOffset(years = self.training_years))]
if resample:
stock_history = self.resample(stock_history)
model.fit(stock_history)
# Make and predict for next year with future dataframe
future = model.make_future_dataframe(periods = days, freq='D')
future = model.predict(future)
if days > 0:
# Print the predicted price
print('Predicted Price on {} = ${:.2f}'.format(
future.loc[future.index[-1], 'ds'], future.loc[future.index[-1], 'yhat']))
title = '%s Historical and Predicted Stock Price' % self.symbol
else:
title = '%s Historical and Modeled Stock Price' % self.symbol
# Set up the plot
fig, ax = plt.subplots(1, 1)
# Plot the actual values
ax.plot(stock_history['ds'], stock_history['y'], 'ko-', linewidth = 1.4, alpha = 0.8, ms = 1.8, label = 'Observations')
# Plot the predicted values
ax.plot(future['ds'], future['yhat'], 'forestgreen',linewidth = 2.4, label = 'Modeled');
# Plot the uncertainty interval as ribbon
ax.fill_between(future['ds'].dt.to_pydatetime(), future['yhat_upper'], future['yhat_lower'], alpha = 0.3,
facecolor = 'g', edgecolor = 'k', linewidth = 1.4, label = 'Confidence Interval')
# Plot formatting
plt.legend(loc = 2, prop={'size': 10}); plt.xlabel('Date'); plt.ylabel('Price $');
plt.grid(linewidth=0.6, alpha = 0.6)
plt.title(title);
plt.show()
return model, future
# Evaluate prediction model for one year
def evaluate_prediction(self, start_date=None, end_date=None, nshares = None):
# Default start date is one year before end of data
# Default end date is end date of data
if start_date is None:
start_date = self.max_date - pd.DateOffset(years=1)
if end_date is None:
end_date = self.max_date
start_date, end_date = self.handle_dates(start_date, end_date)
# Training data starts self.training_years years before start date and goes up to start date
train = self.stock[(self.stock['Date'] < start_date) &
(self.stock['Date'] > (start_date - pd.DateOffset(years=self.training_years)))]
# Testing data is specified in the range
test = self.stock[(self.stock['Date'] >= start_date) & (self.stock['Date'] <= end_date)]
# Create and train the model
model = self.create_model()
model.fit(train)
# Make a future dataframe and predictions
future = model.make_future_dataframe(periods = 365, freq='D')
future = model.predict(future)
# Merge predictions with the known values
test = pd.merge(test, future, on = 'ds', how = 'inner')
train = pd.merge(train, future, on = 'ds', how = 'inner')
# Calculate the differences between consecutive measurements
test['pred_diff'] = test['yhat'].diff()
test['real_diff'] = test['y'].diff()
# Correct is when we predicted the correct direction
test['correct'] = (np.sign(test['pred_diff'][1:]) == np.sign(test['real_diff'][1:])) * 1
# Accuracy when we predict increase and decrease
increase_accuracy = 100 * np.mean(test[test['pred_diff'] > 0]['correct'])
decrease_accuracy = 100 * np.mean(test[test['pred_diff'] < 0]['correct'])
# Calculate mean absolute error
test_errors = abs(test['y'] - test['yhat'])
test_mean_error = np.mean(test_errors)
train_errors = abs(train['y'] - train['yhat'])
train_mean_error = np.mean(train_errors)
# Calculate percentage of time actual value within prediction range
test['in_range'] = False
for i in test.index:
if (test.loc[i, 'y'] < test.loc[i, 'yhat_upper']) & (test.loc[i, 'y'] > test.loc[i, 'yhat_lower']):
test.loc[i, 'in_range'] = True
in_range_accuracy = 100 * np.mean(test['in_range'])
if not nshares:
# Date range of predictions
print('\nPrediction Range: {} to {}.'.format(start_date,
end_date))
# Final prediction vs actual value
print('\nPredicted price on {} = ${:.2f}.'.format(max(future['ds']), future.loc[future.index[-1], 'yhat']))
print('Actual price on {} = ${:.2f}.\n'.format(max(test['ds']), test.loc[test.index[-1], 'y']))
print('Average Absolute Error on Training Data = ${:.2f}.'.format(train_mean_error))
print('Average Absolute Error on Testing Data = ${:.2f}.\n'.format(test_mean_error))
# Direction accuracy
print('When the model predicted an increase, the price increased {:.2f}% of the time.'.format(increase_accuracy))
print('When the model predicted a decrease, the price decreased {:.2f}% of the time.\n'.format(decrease_accuracy))
print('The actual value was within the {:d}% confidence interval {:.2f}% of the time.'.format(int(100 * model.interval_width), in_range_accuracy))
# Reset the plot
self.reset_plot()
# Set up the plot
fig, ax = plt.subplots(1, 1)
# Plot the actual values
ax.plot(train['ds'], train['y'], 'ko-', linewidth = 1.4, alpha = 0.8, ms = 1.8, label = 'Observations')
ax.plot(test['ds'], test['y'], 'ko-', linewidth = 1.4, alpha = 0.8, ms = 1.8, label = 'Observations')
# Plot the predicted values
ax.plot(future['ds'], future['yhat'], 'navy', linewidth = 2.4, label = 'Predicted');
# Plot the uncertainty interval as ribbon
ax.fill_between(future['ds'].dt.to_pydatetime(), future['yhat_upper'], future['yhat_lower'], alpha = 0.6,
facecolor = 'gold', edgecolor = 'k', linewidth = 1.4, label = 'Confidence Interval')
# Put a vertical line at the start of predictions
plt.vlines(x=min(test['ds']), ymin=min(future['yhat_lower']), ymax=max(future['yhat_upper']), colors = 'r',
linestyles='dashed', label = 'Prediction Start')
# Plot formatting
plt.legend(loc = 2, prop={'size': 8}); plt.xlabel('Date'); plt.ylabel('Price $');
plt.grid(linewidth=0.6, alpha = 0.6)
plt.title('{} Model Evaluation from {} to {}.'.format(self.symbol,
start_date, end_date));
plt.show();
# If a number of shares is specified, play the game
elif nshares:
# Only playing the stocks when we predict the stock will increase
test_pred_increase = test[test['pred_diff'] > 0]
test_pred_increase.reset_index(inplace=True)
prediction_profit = []
# Iterate through all the predictions and calculate profit from playing
for i, correct in enumerate(test_pred_increase['correct']):
# If we predicted up and the price goes up, we gain the difference
if correct == 1:
prediction_profit.append(nshares * test_pred_increase.loc[i, 'real_diff'])
# If we predicted up and the price goes down, we lose the difference
else:
prediction_profit.append(nshares * test_pred_increase.loc[i, 'real_diff'])
test_pred_increase['pred_profit'] = prediction_profit
# Put the profit into the test dataframe
test = pd.merge(test, test_pred_increase[['ds', 'pred_profit']], on = 'ds', how = 'left')
test.loc[0, 'pred_profit'] = 0
# Profit for either method at all dates
test['pred_profit'] = test['pred_profit'].cumsum().ffill()
test['hold_profit'] = nshares * (test['y'] - float(test.loc[0, 'y']))
# Display information
print('You played the stock market in {} from {} to {} with {} shares.\n'.format(
self.symbol, start_date, end_date, nshares))
print('When the model predicted an increase, the price increased {:.2f}% of the time.'.format(increase_accuracy))
print('When the model predicted a decrease, the price decreased {:.2f}% of the time.\n'.format(decrease_accuracy))
# Display some friendly information about the perils of playing the stock market
print('The total profit using the Prophet model = ${:.2f}.'.format(np.sum(prediction_profit)))
print('The Buy and Hold strategy profit = ${:.2f}.'.format(float(test.loc[test.index[-1], 'hold_profit'])))
print('\nThanks for playing the stock market!\n')
# Plot the predicted and actual profits over time
self.reset_plot()
# Final profit and final smart used for locating text
final_profit = test.loc[test.index[-1], 'pred_profit']
final_smart = test.loc[test.index[-1], 'hold_profit']
# text location
last_date = test.loc[test.index[-1], 'ds']
text_location = (last_date - pd.DateOffset(months = 1))
plt.style.use('dark_background')
# Plot smart profits
plt.plot(test['ds'], test['hold_profit'], 'b',
linewidth = 1.8, label = 'Buy and Hold Strategy')
# Plot prediction profits
plt.plot(test['ds'], test['pred_profit'],
color = 'g' if final_profit > 0 else 'r',
linewidth = 1.8, label = 'Prediction Strategy')
# Display final values on graph
plt.text(x = text_location,
y = final_profit + (final_profit / 40),
s = '$%d' % final_profit,
color = 'g' if final_profit > 0 else 'r',
size = 18)
plt.text(x = text_location,
y = final_smart + (final_smart / 40),
s = '$%d' % final_smart,
color = 'g' if final_smart > 0 else 'r',
size = 18);
# Plot formatting
plt.ylabel('Profit (US $)'); plt.xlabel('Date');
plt.title('Predicted versus Buy and Hold Profits');
plt.legend(loc = 2, prop={'size': 10});
plt.grid(alpha=0.2);
plt.show()
def retrieve_google_trends(self, search, date_range):
# Set up the trend fetching object
pytrends = TrendReq(hl='en-US', tz=360)
kw_list = [search]
try:
# Create the search object
pytrends.build_payload(kw_list, cat=0, timeframe=date_range[0], geo='', gprop='news')
# Retrieve the interest over time
trends = pytrends.interest_over_time()
related_queries = pytrends.related_queries()
except Exception as e:
print('\nGoogle Search Trend retrieval failed.')
print(e)
return
return trends, related_queries
def changepoint_date_analysis(self, search=None):
self.reset_plot()
model = self.create_model()
# Use past self.training_years years of data
train = self.stock[self.stock['Date'] > (self.max_date - pd.DateOffset(years = self.training_years))]
model.fit(train)
# Predictions of the training data (no future periods)
future = model.make_future_dataframe(periods=0, freq='D')
future = model.predict(future)
train = pd.merge(train, future[['ds', 'yhat']], on = 'ds', how = 'inner')
changepoints = model.changepoints
train = train.reset_index(drop=True)
# Create dataframe of only changepoints
change_indices = []
for changepoint in (changepoints):
change_indices.append(train[train['ds'] == changepoint].index[0])
c_data = train.loc[change_indices, :]
deltas = model.params['delta'][0]
c_data['delta'] = deltas
c_data['abs_delta'] = abs(c_data['delta'])
# Sort the values by maximum change
c_data = c_data.sort_values(by='abs_delta', ascending=False)
# Limit to 10 largest changepoints
c_data = c_data[:10]
# Separate into negative and positive changepoints
cpos_data = c_data[c_data['delta'] > 0]
cneg_data = c_data[c_data['delta'] < 0]
# Changepoints and data
if not search:
print('\nChangepoints sorted by slope rate of change (2nd derivative):\n')
print(c_data.loc[:, ['Date', 'Adj. Close', 'delta']][:5])
# Line plot showing actual values, estimated values, and changepoints
self.reset_plot()
# Set up line plot
plt.plot(train['ds'], train['y'], 'ko', ms = 4, label = 'Stock Price')
plt.plot(future['ds'], future['yhat'], color = 'navy', linewidth = 2.0, label = 'Modeled')
# Changepoints as vertical lines
plt.vlines(cpos_data['ds'].dt.to_pydatetime(), ymin = min(train['y']), ymax = max(train['y']),
linestyles='dashed', color = 'r',
linewidth= 1.2, label='Negative Changepoints')
plt.vlines(cneg_data['ds'].dt.to_pydatetime(), ymin = min(train['y']), ymax = max(train['y']),
linestyles='dashed', color = 'darkgreen',
linewidth= 1.2, label='Positive Changepoints')
plt.legend(prop={'size':10});
plt.xlabel('Date'); plt.ylabel('Price ($)'); plt.title('Stock Price with Changepoints')
plt.show()
# Search for search term in google news
# Show related queries, rising related queries
# Graph changepoints, search frequency, stock price
if search:
date_range = ['%s %s' % (str(min(train['Date'])), str(max(train['Date'])))]
# Get the Google Trends for specified terms and join to training dataframe
trends, related_queries = self.retrieve_google_trends(search, date_range)
if (trends is None) or (related_queries is None):
print('No search trends found for %s' % search)
return
print('\n Top Related Queries: \n')
print(related_queries[search]['top'].head())
print('\n Rising Related Queries: \n')
print(related_queries[search]['rising'].head())
# Upsample the data for joining with training data
trends = trends.resample('D')
trends = trends.reset_index(level=0)
trends = trends.rename(columns={'date': 'ds', search: 'freq'})
# Interpolate the frequency
trends['freq'] = trends['freq'].interpolate()
# Merge with the training data
train = pd.merge(train, trends, on = 'ds', how = 'inner')
# Normalize values
train['y_norm'] = train['y'] / max(train['y'])
train['freq_norm'] = train['freq'] / max(train['freq'])
self.reset_plot()
# Plot the normalized stock price and normalize search frequency
plt.plot(train['ds'], train['y_norm'], 'k-', label = 'Stock Price')
plt.plot(train['ds'], train['freq_norm'], color='goldenrod', label = 'Search Frequency')
# Changepoints as vertical lines
plt.vlines(cpos_data['ds'].dt.to_pydatetime(), ymin = 0, ymax = 1,
linestyles='dashed', color = 'r',
linewidth= 1.2, label='Negative Changepoints')
plt.vlines(cneg_data['ds'].dt.to_pydatetime(), ymin = 0, ymax = 1,
linestyles='dashed', color = 'darkgreen',
linewidth= 1.2, label='Positive Changepoints')
# Plot formatting
plt.legend(prop={'size': 10})
plt.xlabel('Date'); plt.ylabel('Normalized Values'); plt.title('%s Stock Price and Search Frequency for %s' % (self.symbol, search))
plt.show()
# Predict the future price for a given range of days
def predict_future(self, days=30):
# Use past self.training_years years for training
train = self.stock[self.stock['Date'] > (max(self.stock['Date']) - pd.DateOffset(years=self.training_years))]
model = self.create_model()
model.fit(train)
# Future dataframe with specified number of days to predict
future = model.make_future_dataframe(periods=days, freq='D')
future = model.predict(future)
# Only concerned with future dates
future = future[future['ds'] >= max(self.stock['Date'])]
# Remove the weekends
future = self.remove_weekends(future)
# Calculate whether increase or not
future['diff'] = future['yhat'].diff()
future = future.dropna()
# Find the prediction direction and create separate dataframes
future['direction'] = (future['diff'] > 0) * 1
# Rename the columns for presentation
future = future.rename(columns={'ds': 'Date', 'yhat': 'estimate', 'diff': 'change',
'yhat_upper': 'upper', 'yhat_lower': 'lower'})
future_increase = future[future['direction'] == 1]
future_decrease = future[future['direction'] == 0]
# Print out the dates
print('\nPredicted Increase: \n')
print(future_increase[['Date', 'estimate', 'change', 'upper', 'lower']])
print('\nPredicted Decrease: \n')
print(future_decrease[['Date', 'estimate', 'change', 'upper', 'lower']])
self.reset_plot()
# Set up plot
plt.style.use('fivethirtyeight')
matplotlib.rcParams['axes.labelsize'] = 10
matplotlib.rcParams['xtick.labelsize'] = 8
matplotlib.rcParams['ytick.labelsize'] = 8
matplotlib.rcParams['axes.titlesize'] = 12
# Plot the predictions and indicate if increase or decrease
fig, ax = plt.subplots(1, 1, figsize=(8, 6))
# Plot the estimates
ax.plot(future_increase['Date'], future_increase['estimate'], 'g^', ms = 12, label = 'Pred. Increase')
ax.plot(future_decrease['Date'], future_decrease['estimate'], 'rv', ms = 12, label = 'Pred. Decrease')
# Plot errorbars
ax.errorbar(future['Date'].dt.to_pydatetime(), future['estimate'],
yerr = future['upper'] - future['lower'],
capthick=1.4, color = 'k',linewidth = 2,
ecolor='darkblue', capsize = 4, elinewidth = 1, label = 'Pred with Range')
# Plot formatting
plt.legend(loc = 2, prop={'size': 10});
plt.xticks(rotation = '45')
plt.ylabel('Predicted Stock Price (US $)');
plt.xlabel('Date'); plt.title('Predictions for %s' % self.symbol);
plt.show()
def changepoint_prior_validation(self, start_date=None, end_date=None,changepoint_priors = [0.001, 0.05, 0.1, 0.2]):
# Default start date is two years before end of data
# Default end date is one year before end of data
if start_date is None:
start_date = self.max_date - pd.DateOffset(years=2)
if end_date is None:
end_date = self.max_date - pd.DateOffset(years=1)
# Convert to pandas datetime for indexing dataframe
start_date = pd.to_datetime(start_date)
end_date = pd.to_datetime(end_date)
start_date, end_date = self.handle_dates(start_date, end_date)
# Select self.training_years number of years
train = self.stock[(self.stock['Date'] > (start_date - pd.DateOffset(years=self.training_years))) &
(self.stock['Date'] < start_date)]
# Testing data is specified by range
test = self.stock[(self.stock['Date'] >= start_date) & (self.stock['Date'] <= end_date)]
eval_days = (max(test['Date']) - min(test['Date'])).days
results = pd.DataFrame(0, index = list(range(len(changepoint_priors))),
columns = ['cps', 'train_err', 'train_range', 'test_err', 'test_range'])
print('\nValidation Range {} to {}.\n'.format(min(test['Date']),
max(test['Date'])))
# Iterate through all the changepoints and make models
for i, prior in enumerate(changepoint_priors):
results.loc[i, 'cps'] = prior
# Select the changepoint
self.changepoint_prior_scale = prior
# Create and train a model with the specified cps
model = self.create_model()
model.fit(train)
future = model.make_future_dataframe(periods=eval_days, freq='D')
future = model.predict(future)
# Training results and metrics
train_results = pd.merge(train, future[['ds', 'yhat', 'yhat_upper', 'yhat_lower']], on = 'ds', how = 'inner')
avg_train_error = np.mean(abs(train_results['y'] - train_results['yhat']))
avg_train_uncertainty = np.mean(abs(train_results['yhat_upper'] - train_results['yhat_lower']))
results.loc[i, 'train_err'] = avg_train_error
results.loc[i, 'train_range'] = avg_train_uncertainty
# Testing results and metrics
test_results = pd.merge(test, future[['ds', 'yhat', 'yhat_upper', 'yhat_lower']], on = 'ds', how = 'inner')
avg_test_error = np.mean(abs(test_results['y'] - test_results['yhat']))
avg_test_uncertainty = np.mean(abs(test_results['yhat_upper'] - test_results['yhat_lower']))
results.loc[i, 'test_err'] = avg_test_error
results.loc[i, 'test_range'] = avg_test_uncertainty
print(results)
# Plot of training and testing average errors
self.reset_plot()
plt.plot(results['cps'], results['train_err'], 'bo-', ms = 8, label = 'Train Error')
plt.plot(results['cps'], results['test_err'], 'r*-', ms = 8, label = 'Test Error')
plt.xlabel('Changepoint Prior Scale'); plt.ylabel('Avg. Absolute Error ($)');
plt.title('Training and Testing Curves as Function of CPS')
plt.grid(color='k', alpha=0.3)
plt.xticks(results['cps'], results['cps'])
plt.legend(prop={'size':10})
plt.show();
# Plot of training and testing average uncertainty
self.reset_plot()
plt.plot(results['cps'], results['train_range'], 'bo-', ms = 8, label = 'Train Range')
plt.plot(results['cps'], results['test_range'], 'r*-', ms = 8, label = 'Test Range')
plt.xlabel('Changepoint Prior Scale'); plt.ylabel('Avg. Uncertainty ($)');
plt.title('Uncertainty in Estimate as Function of CPS')
plt.grid(color='k', alpha=0.3)
plt.xticks(results['cps'], results['cps'])
plt.legend(prop={'size':10})
plt.show();