-
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Alia_protocol_serial.py
1191 lines (1000 loc) · 42.1 KB
/
Alia_protocol_serial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""Module to communicate with an Arduino lock-in amplifier device over a serial
connection.
"""
__author__ = "Dennis van Gils"
__authoremail__ = "[email protected]"
__url__ = "https://github.com/Dennis-van-Gils/DvG_Arduino_lock-in_amp"
__date__ = "03-02-2022"
__version__ = "1.0.0"
# pylint: disable=bare-except, broad-except, pointless-string-statement, invalid-name
import sys
import struct
from enum import Enum
from typing import AnyStr, Optional, Tuple, Union
import time as Time
import re
import serial
import numpy as np
from numba import njit
from dvg_devices import Arduino_protocol_serial
from dvg_debug_functions import dprint, print_fancy_traceback as pft
@njit("float64[:](float64[:])", nogil=True, cache=False)
def round_C_style(array_in: np.ndarray) -> np.ndarray:
"""
round_C_style([0.1 , 1.45, 1.50, 1.55, -0.1 , -1.45, -1.55])
Out[]: array([0. , 1. , 1. , 2. , -0. , -1. , -2. ])
"""
_abs = np.abs(array_in)
_trunc = np.trunc(_abs)
_frac_rounded = np.zeros_like(_abs)
_frac_rounded[(_abs % 1) >= 0.5] = 1
return np.sign(array_in) * (_trunc + _frac_rounded)
class Waveform(Enum):
# fmt: off
Unknown = -1
Sine = 0
Square = 1
Triangle = 2
# fmt: on
class Alia(Arduino_protocol_serial.Arduino):
"""This class manages the serial protocol for an Arduino lock-in amplifier,
aka `Alia`.
"""
class Config:
"""Container for the hardware Arduino lock-in amplifier settings"""
# fmt: off
# Microcontroller unit (mcu) info
mcu_firmware = None # Firmware version
mcu_model = None # Chipset model
mcu_fcpu = None # Clock frequency
mcu_uid = None # Unique identifier of the chip (serial number)
# Lock-in amplifier CONSTANTS
SAMPLING_PERIOD = 0 # [s]
BLOCK_SIZE = 0 # Number of samples send per TX_buffer
N_BYTES_TX_BUFFER = 0 # [data bytes] Expected number of bytes for each
# correctly received TX_buffer from the Arduino
DAC_OUTPUT_BITS = 0 # [bits]
ADC_INPUT_BITS = 0 # [bits]
ADC_DIFFERENTIAL = 0 # [bool]
ADC_BITS_TO_V = 0 # Multiplication factor
A_REF = 0 # [V] Analog voltage reference of the Arduino
MIN_N_LUT = 0 # Minimum allowed number of LUT samples
MAX_N_LUT = 0 # Maximum allowed number of LUT samples
# Derived settings
Fs = 0 # [Hz] Sampling rate
F_Nyquist = 0 # [Hz] Nyquist frequency
T_SPAN_TX_BUFFER = 0 # [s] Time interval spanned by a single TX_buffer
# Waveform look-up table (LUT) settings
N_LUT = 0 # Number of samples covering a full period
""" OBSOLETE, kept as reference
# `LUT_mcu` will contain a copy of the LUT array as used on the
# microcontroller unit side in units of bit-values as sent out over its
# DAC. Multiply by `A_REF/(2**ADC_INPUT_BITS - 1)` to get units of [V].
# `LUT_mcu` is not used in this Python code to reconstruct the `ref_X`
# and `ref_Y` timeseries, but is kept as a reference for
# troubleshooting.
LUT_mcu = np.array([], dtype=np.uint16, order="C")
"""
# `LUT_X` and `LUT_Y` will contain a single period each of the
# reference signals, where `Y` is phase-shifted by 90 degrees, i.e. the
# quadrant. Both will get (re)computed based on the current reference
# signal parameters. Both `LUT_X` and `LUT_Y` are non-dimensional and
# can directly be used for heterodyne mixing.
LUT_X = np.array([], dtype=float, order="C") # [non-dim]
LUT_Y = np.array([], dtype=float, order="C") # [non-dim]
# Reference signal parameters
ref_waveform = Waveform.Unknown # Waveform enum
ref_freq = 0 # [Hz]
ref_V_offset = 0 # [V]
ref_V_ampl = 0 # [V]
ref_V_ampl_RMS = 0 # [V_RMS]
ref_RMS_factor = np.nan # RMS factor belonging to chosen waveform
ref_is_clipping_HI = False # Output is set too high?
ref_is_clipping_LO = False # Output is set too low?
# Serial communication sentinels: Start and end of message
SOM = b"\x00\x80\x00\x80\x00\x80\x00\x80\x00\x80"
EOM = b"\xff\x7f\x00\x00\xff\x7f\x00\x00\xff\x7f"
N_BYTES_SOM = len(SOM)
N_BYTES_EOM = len(EOM)
# Binary formats to decode from binary streams
binfrmt_counter = ""
binfrmt_millis = ""
binfrmt_micros = ""
binfrmt_idx_phase = ""
binfrmt_sig_I = ""
byte_slice_counter = slice(0)
byte_slice_millis = slice(0)
byte_slice_micros = slice(0)
byte_slice_idx_phase = slice(0)
byte_slice_sig_I = slice(0)
# fmt: on
# ADC autocalibration parameters
ADC_autocal_is_valid = False
ADC_autocal_gaincorr = 0
ADC_autocal_offsetcorr = 0
def __init__(
self,
name="Alia",
long_name="Arduino lock-in amplifier",
connect_to_specific_ID="Alia",
baudrate=1e6,
read_timeout=1,
write_timeout=1,
):
super().__init__(
name=name,
long_name=long_name,
connect_to_specific_ID=connect_to_specific_ID,
)
self.serial_settings = {
"baudrate": baudrate,
"timeout": read_timeout,
"write_timeout": write_timeout,
}
self.read_until_left_over_bytes = bytearray()
self.config = self.Config()
self.lockin_paused = True
# --------------------------------------------------------------------------
# begin
# --------------------------------------------------------------------------
def begin(
self,
waveform: Optional[Waveform] = None,
freq: Optional[float] = None,
V_offset: Optional[float] = None,
V_ampl: Optional[float] = None,
V_ampl_RMS: Optional[float] = None,
) -> bool:
"""Determine the chipset and firmware of the Arduino lock-in amp and
prepare the lock-in amp for operation. The default startup state is
off. The optional parameters can be used to set the reference signal and
when not supplied, the pre-existing values known to the Arduino will be
used instead, i.e. it will pick up where it left.
Returns:
True if successful, False otherwise.
"""
success, _foo, _bar = self.turn_off()
if not success:
return False
# Shorthand alias
c = self.config
print("Microcontroller")
print("───────────────\n")
success, ans_str = self.query("mcu?")
if success:
try:
(
c.mcu_firmware,
c.mcu_model,
c.mcu_fcpu,
c.mcu_uid,
) = ans_str.split("\t")
c.mcu_fcpu = int(c.mcu_fcpu)
except Exception as err:
pft(err)
return False
else:
return False
print(" firmware %s" % c.mcu_firmware)
print(" model %s" % c.mcu_model)
print(" fcpu %.0f MHz" % (c.mcu_fcpu / 1e6))
print(" serial %s" % c.mcu_uid)
print("")
print("Lock-in constants")
print("─────────────────\n")
success, ans_str = self.query("const?")
if success:
try:
# fmt: off
ans_list = ans_str.split("\t")
c.SAMPLING_PERIOD = (round(float(ans_list[0])*1e-6, 9))
c.BLOCK_SIZE = int(ans_list[1])
c.N_BYTES_TX_BUFFER = int(ans_list[2])
c.DAC_OUTPUT_BITS = int(ans_list[3])
c.ADC_INPUT_BITS = int(ans_list[4])
c.ADC_DIFFERENTIAL = bool(int(ans_list[5]))
c.A_REF = float(ans_list[6])
if c.mcu_firmware == "ALIA v0.2.0 VSCODE":
# Legacy firmware support
pass
else:
c.MIN_N_LUT = int(ans_list[7])
c.MAX_N_LUT = int(ans_list[8])
# fmt: on
except Exception as err:
pft(err)
sys.exit(1)
else:
return False
c.Fs = round(1.0 / c.SAMPLING_PERIOD, 6)
c.F_Nyquist = round(c.Fs / 2, 6)
c.T_SPAN_TX_BUFFER = c.BLOCK_SIZE * c.SAMPLING_PERIOD
c.ADC_BITS_TO_V = c.A_REF / ((1 << c.ADC_INPUT_BITS) - 1)
if c.ADC_DIFFERENTIAL:
c.ADC_BITS_TO_V *= 2
def fancy(name, value, value_format, unit=""):
format_str = "{:>16s} %s {:<s}" % value_format
print(format_str.format(name, value, unit))
fancy("Fs", c.Fs, "{:>12,.2f}", "Hz")
fancy("F_Nyquist", c.F_Nyquist, "{:>12,.2f}", "Hz")
fancy("sampling period", c.SAMPLING_PERIOD * 1e6, "{:>12.3f}", "us")
fancy("block size", c.BLOCK_SIZE, "{:>12d}", "samples")
fancy("TX buffer", c.N_BYTES_TX_BUFFER, "{:>12d}", "bytes")
fancy("TX buffer", c.T_SPAN_TX_BUFFER, "{:>12.3f}", "s")
fancy(
"TX baud rate",
c.N_BYTES_TX_BUFFER * c.Fs / c.BLOCK_SIZE * 10,
"{:>12,.0f}",
"Bd",
)
fancy("DAC output", c.DAC_OUTPUT_BITS, "{:>12d}", "bit")
fancy("ADC input", c.ADC_INPUT_BITS, "{:>12d}", "bit")
fancy(
"ADC input",
"differential" if c.ADC_DIFFERENTIAL else "single-ended",
"{:s}",
)
fancy("A_ref", c.A_REF, "{:>12.3f}", "V")
if c.mcu_firmware == "ALIA v0.2.0 VSCODE":
# Legacy firmware support
pass
else:
fancy("min N_LUT", c.MIN_N_LUT, "{:>12d}", "samples")
fancy("max N_LUT", c.MAX_N_LUT, "{:>12d}", "samples")
self.query_ADC_autocalibration()
self.set_ref(waveform, freq, V_offset, V_ampl, V_ampl_RMS)
print("┌─────────────────────────┐")
print("│ All systems GO! │")
print("└─────────────────────────┘\n")
# fmt: off
# Binary formats to decode from binary streams
if c.mcu_firmware == "ALIA v0.2.0 VSCODE":
# Legacy firmware support
c.binfrmt_counter = "<I" # [uint32_t] TX_buffer header
c.binfrmt_millis = "<I" # [uint32_t] TX_buffer header
c.binfrmt_micros = "<H" # [uint16_t] TX_buffer header
c.binfrmt_idx_phase = "<{:d}H" # [uint16_t] TX_buffer body
c.binfrmt_sig_I = "<{:d}h" # [int16_t] TX_buffer body
c.byte_slice_counter = slice(
c.N_BYTES_SOM,
c.N_BYTES_SOM
+ struct.calcsize(c.binfrmt_counter[-1]),
)
c.byte_slice_millis = slice(
c.byte_slice_counter.stop,
c.byte_slice_counter.stop
+ struct.calcsize(c.binfrmt_millis[-1]),
)
c.byte_slice_micros = slice(
c.byte_slice_millis.stop,
c.byte_slice_millis.stop
+ struct.calcsize(c.binfrmt_micros[-1]),
)
c.byte_slice_idx_phase = slice(
c.byte_slice_micros.stop,
c.byte_slice_micros.stop
+ c.BLOCK_SIZE * struct.calcsize(c.binfrmt_idx_phase[-1]),
)
c.byte_slice_sig_I = slice(
c.byte_slice_idx_phase.stop,
c.byte_slice_idx_phase.stop
+ c.BLOCK_SIZE * struct.calcsize(c.binfrmt_sig_I[-1]),
)
else:
# "ALIA v1.0.0" and above
c.binfrmt_counter = "<I" # [uint32_t] TX_buffer header
c.binfrmt_millis = "<I" # [uint32_t] TX_buffer header
c.binfrmt_micros = "<H" # [uint16_t] TX_buffer header
c.binfrmt_idx_phase = "<H" # [uint16_t] TX_buffer header
c.binfrmt_sig_I = "<{:d}h" # [int16_t] TX_buffer body
c.byte_slice_counter = slice(
c.N_BYTES_SOM,
c.N_BYTES_SOM
+ struct.calcsize(c.binfrmt_counter[-1]),
)
c.byte_slice_millis = slice(
c.byte_slice_counter.stop,
c.byte_slice_counter.stop
+ struct.calcsize(c.binfrmt_millis[-1]),
)
c.byte_slice_micros = slice(
c.byte_slice_millis.stop,
c.byte_slice_millis.stop
+ struct.calcsize(c.binfrmt_micros[-1]),
)
c.byte_slice_idx_phase = slice(
c.byte_slice_micros.stop,
c.byte_slice_micros.stop
+ struct.calcsize(c.binfrmt_idx_phase[-1]),
)
c.byte_slice_sig_I = slice(
c.byte_slice_idx_phase.stop,
c.byte_slice_idx_phase.stop
+ c.BLOCK_SIZE * struct.calcsize(c.binfrmt_sig_I[-1]),
)
# fmt: on
return True
# --------------------------------------------------------------------------
# safe_query
# --------------------------------------------------------------------------
def safe_query(
self, msg_str: AnyStr, raises_on_timeout: bool = True
) -> Tuple[bool, AnyStr]:
"""Wraps `query()` with a check on the running state of the lock-in amp.
When running it will stop running, perform the query and resume running.
Returns:
Tuple(
success: bool
ans_str: str | bytes | None
)
"""
was_paused = self.lockin_paused
if not was_paused:
self.turn_off()
success, ans_str = self.query(msg_str, raises_on_timeout)
if success and not was_paused:
self.turn_on()
return success, ans_str
# --------------------------------------------------------------------------
# turn_on/off
# --------------------------------------------------------------------------
def turn_on(self, reset_timer: bool = False) -> bool:
"""
Returns:
True if successful, False otherwise.
"""
success = self.write("_on" if reset_timer else "on")
if success:
self.lockin_paused = False
self.read_until_left_over_bytes = bytearray()
return success
def turn_off(
self, raises_on_timeout: bool = False
) -> Tuple[bool, bool, bytes]:
"""
Returns:
Tuple(
success : bool,
was_off : bool,
ans_bytes: bytes # For debugging purposes
)
"""
success = False
was_off = True
ans_bytes = b""
# Clear potentially large amount of binary data waiting in the buffer to
# be read. Essential.
self.ser.flushInput()
if self.write("off", raises_on_timeout):
self.ser.flushOutput() # Send out 'off' as fast as possible
# Check for acknowledgement reply
try:
ans_bytes = self.ser.read_until("off\n".encode())
# print(len(ans_bytes))
# print("found off: ", end ='')
# print(ans_bytes[-4:])
except (
serial.SerialTimeoutException,
serial.SerialException,
) as err:
# NOTE: The Serial library does not throw an exception when it
# actually times out! We will check for zero received bytes as
# indication for timeout, later.
pft(err, 3)
except Exception as err:
pft(err, 3)
sys.exit(1)
else:
if len(ans_bytes) == 0:
# Received 0 bytes, probably due to a timeout.
pft("Received 0 bytes. Read probably timed out.", 3)
else:
try:
was_off = ans_bytes[-12:] == b"already_off\n"
except:
pass
success = True
self.lockin_paused = True
return success, was_off, ans_bytes
# --------------------------------------------------------------------------
# ADC autocalibration
# --------------------------------------------------------------------------
def perform_ADC_autocalibration(self) -> bool:
"""Perform the autocalibration routine for the ADC in single-ended mode.
The DAC voltage output will be internally routed to the ADC input, in
addition to the analog output pin [A0]. During calibration the analog
output will first output a low voltage, followed by a high voltage for
each around 75 ms. The results will /not/ be stored into the micro-
controller flash automatically. You must call method
`store_ADC_autocalibration()` to commit the results to flash memory.
- It is advised to first disconnect pins [A0] and [A1].
- Only implemented for single-ended mode, not differential.
Returns:
True if successful, False otherwise.
"""
if self.config.mcu_firmware == "ALIA v1.0.0 MICROCHIPSTUDIO":
# Not implemented in this firmware
return False
print("\nADC autocalibration")
print("───────────────────\n")
self.set_read_termination("Done.\n")
success, ans_str = self.safe_query("autocal")
self.set_read_termination("\n")
if success:
print(" ", end="")
print(ans_str.replace("\n", "\n "))
print()
# Extract gaincorr and offsetcorr from the serial output
gaincorr = re.findall("gaincorr = ([0-9]*)", ans_str)
offsetcorr = re.findall("offsetcorr = ([0-9]*)", ans_str)
if not gaincorr or not offsetcorr:
return False
self.config.ADC_autocal_is_valid = True
self.config.ADC_autocal_gaincorr = int(gaincorr[0])
self.config.ADC_autocal_offsetcorr = int(offsetcorr[0])
return True
return False
def store_ADC_autocalibration(self) -> bool:
"""Write the ADC autocalibration results to the microcontroller flash.
WARNING: This will wear out the flash, so don't call it unnecessarily.
Returns:
True if successful, False otherwise.
"""
if self.config.mcu_firmware == "ALIA v1.0.0 MICROCHIPSTUDIO":
# Not implemented in this firmware
return False
success, ans_str = self.safe_query("store_autocal")
if success and ans_str == "1":
print(
"Wrote ADC autocalibration results to microcontroller flash.\n"
)
return True
else:
print(
"ERROR: Failed to write ADC autocalibration results to "
"microcontroller flash.\n"
)
return False
def query_ADC_autocalibration(self) -> bool:
"""Retrieve the ADC autocalibration results from the microcontroller.
Returns:
True if successful, False otherwise.
"""
if self.config.mcu_firmware == "ALIA v1.0.0 MICROCHIPSTUDIO":
# Not implemented in this firmware
return False
print("\nADC calibration")
print("───────────────\n")
success, ans_str = self.safe_query("autocal?")
if success:
try:
ans_list = ans_str.split("\t")
is_valid = bool(int(ans_list[0]))
gaincorr = int(ans_list[1])
offsetcorr = int(ans_list[2])
except Exception as err:
pft(err)
return False
else:
return False
print(" is valid: %s" % ("yes" if is_valid else "no"))
print(" offsetcorr: %d" % offsetcorr)
print(" gaincorr: %d" % gaincorr)
print()
self.config.ADC_autocal_is_valid = is_valid
self.config.ADC_autocal_gaincorr = gaincorr
self.config.ADC_autocal_offsetcorr = offsetcorr
return True
# --------------------------------------------------------------------------
# LUT
# --------------------------------------------------------------------------
''' OBSOLETE, kept as reference
def query_LUT(self) -> bool:
"""Send command "lut?" to the Arduino lock-in amp to retrieve the look-
up table (LUT) that is used for the output reference signal `ref_X`.
This method will update members:
`config.N_LUT`
`config.is_LUT_dirty`
`config.LUT_mcu`
Returns:
True if successful, False otherwise.
"""
c = self.config # Short-hand
was_paused = self.lockin_paused
if not was_paused:
self.turn_off()
if not self.write("l?"):
return False
# First read `N_LUT` and `is_LUT_dirty` from the binary stream
try:
ans_bytes = self.ser.read(size=3)
except:
pft("'%s' I/O ERROR: Can't read bytes LUT" % self.name)
self.ser.flushInput()
return False
if len(ans_bytes) == 0:
# Received 0 bytes, probably due to a timeout.
pft("'%s' I/O ERROR: Timed out reading LUT" % self.name)
self.ser.flushInput()
return False
try:
N_LUT = struct.unpack("<H", ans_bytes[0:2])
is_LUT_dirty = struct.unpack("<?", ans_bytes[2:])
except:
pft("'%s' I/O ERROR: Can't unpack bytes LUT" % self.name)
self.ser.flushInput()
return False
c.N_LUT = int(N_LUT[0])
#c.is_LUT_dirty = bool(is_LUT_dirty[0])
# Now read the remaining LUT array from the binary stream still left in
# the serial buffer
try:
ans_bytes = self.ser.read(size=c.N_LUT * 2)
except:
pft("'%s' I/O ERROR: Can't read bytes LUT" % self.name)
self.ser.flushInput()
return False
if len(ans_bytes) == 0:
# Received 0 bytes, probably due to a timeout.
pft("'%s' I/O ERROR: Timed out reading LUT" % self.name)
self.ser.flushInput()
return False
try:
LUT_mcu = np.array(
struct.unpack("<{:d}H".format(c.N_LUT), ans_bytes),
dtype=np.uint16,
order="C",
)
except:
pft("'%s' I/O ERROR: Can't unpack bytes LUT" % self.name)
self.ser.flushInput()
return False
c.LUT_mcu = LUT_mcu
if not was_paused:
self.turn_on()
return True
'''
# --------------------------------------------------------------------------
# query_ref
# --------------------------------------------------------------------------
def query_ref(self) -> bool:
"""Send command "ref?" to the Arduino lock-in amp to retrieve the
reference signal `ref_X` parameters from it, and to compute the
LUT waveform internal to the Arduino. Subsequently, `LUT_X` and `LUT_Y`
will get recomputed on the Python side.
This method will update members:
`config.ref_waveform`
`config.ref_freq`
`config.ref_V_offset`
`config.ref_V_ampl`
`config.ref_V_ampl_RMS`
`config.ref_RMS_factor`
`config.ref_is_clipping_HI`
`config.ref_is_clipping_LO`
`config.N_LUT`
`config.LUT_X`
`config.LUT_Y`
Returns:
True if successful, False otherwise.
"""
c = self.config # Short-hand
success, ans_str = self.safe_query("?")
if success:
try:
ans_list = ans_str.split("\t")
# fmt: off
c.ref_waveform = Waveform[ans_list[0]]
c.ref_freq = float(ans_list[1])
c.ref_V_offset = float(ans_list[2])
c.ref_V_ampl = float(ans_list[3])
c.ref_V_ampl_RMS = float(ans_list[4])
c.ref_is_clipping_HI = bool(int(ans_list[5]))
c.ref_is_clipping_LO = bool(int(ans_list[6]))
c.N_LUT = int(ans_list[7])
# fmt: on
except Exception as err:
pft(err)
return False
else:
return False
if c.mcu_firmware == "ALIA v0.2.0 VSCODE":
# ---------------------------
# Legacy firmware
# ---------------------------
pass
else:
# ---------------------------
# Modern firmware
# ---------------------------
# Reconstruct `LUT_X` and `LUT_Y` in advance
idxs = np.arange(0, c.N_LUT)
phis = 2 * np.pi * idxs / c.N_LUT # [0, 2*pi>
if c.ref_waveform == Waveform.Sine:
# N_LUT integer multiple of 4: extrema [-1, 1], symmetric
# N_LUT others : extrema <-1, 1>, symmetric
c.ref_RMS_factor = np.sqrt(2)
LUT_X = np.sin(phis)
LUT_Y = np.cos(phis)
elif c.ref_waveform == Waveform.Square:
# N_LUT even : extrema [-1, 1], symmetric
# N_LUT odd : extrema [-1, 1], asymmetric !!!
c.ref_RMS_factor = 1
LUT_X = np.ones(c.N_LUT)
LUT_X[int(np.ceil(c.N_LUT / 2)) :] = -1
LUT_Y = np.interp(
np.arange(c.N_LUT) + c.N_LUT / 4.0,
np.arange(c.N_LUT * 2),
np.tile(LUT_X, 2),
)
elif c.ref_waveform == Waveform.Triangle:
# N_LUT integer multiple of 4: extrema [-1, 1], symmetric
# N_LUT others : extrema <-1, 1>, symmetric
c.ref_RMS_factor = np.sqrt(3)
LUT_X = np.arcsin(np.sin(phis)) / np.pi * 2
LUT_Y = 1 - np.arccos(np.cos(phis)) / np.pi * 2
elif c.ref_waveform == Waveform.Unknown:
c.ref_RMS_factor = np.nan
LUT_X = np.full(np.nan, c.N_LUT)
LUT_Y = np.full(np.nan, c.N_LUT)
# Scale the LUTs [-1, 1] with the RMS factor
LUT_X *= c.ref_RMS_factor
LUT_Y *= c.ref_RMS_factor
c.LUT_X = np.asarray(LUT_X, dtype=float, order="C")
c.LUT_Y = np.asarray(LUT_Y, dtype=float, order="C")
return True
# --------------------------------------------------------------------------
# set_ref
# --------------------------------------------------------------------------
def set_ref(
self,
waveform: Optional[Waveform] = None,
freq: Optional[float] = None,
V_offset: Optional[float] = None,
V_ampl: Optional[float] = None,
V_ampl_RMS: Optional[float] = None,
) -> bool:
"""Send new reference signal `ref_X` parameters to the Arduino and
retrieve the obtained parameters. The Arduino will compute the new LUT,
based on the obtained parameters. The actually obtained parameters might
differ from the requested ones, noticably the frequency. Subsequently,
`LUT_X` and `LUT_Y` will get recomputed on the Python side.
This method will update members:
`config.ref_waveform`
`config.ref_freq`
`config.ref_V_offset`
`config.ref_V_ampl`
`config.ref_V_ampl_RMS`
`config.ref_RMS_factor`
`config.ref_is_clipping_HI`
`config.ref_is_clipping_LO`
`config.N_LUT`
`config.LUT_X`
`config.LUT_Y`
Args:
waveform (Waveform):
Enumeration decoding a waveform type, like sine, square or
triangle wave.
freq (float):
The requested frequency in Hz.
V_offset (float):
The requested voltage offset in V.
V_ampl (float):
The requested voltage amplitude in V.
V_ampl_RMS (float):
The requested voltage amplitude in V_RMS.
Returns:
True if successful, False otherwise.
"""
was_paused = self.lockin_paused
if not was_paused:
self.turn_off()
if waveform is not None:
success, _ans_str = self.query("_wave %i" % waveform.value)
if not success:
return False
if freq is not None:
success, _ans_str = self.query("_freq %f" % freq)
if not success:
return False
if V_offset is not None:
success, _ans_str = self.query("_offs %f" % V_offset)
if not success:
return False
if V_ampl is not None:
success, _ans_str = self.query("_ampl %f" % V_ampl)
if not success:
return False
if V_ampl_RMS is not None:
success, _ans_str = self.query("_vrms %f" % V_ampl_RMS)
if not success:
return False
if not self.query_ref():
return False
if not was_paused:
self.turn_on()
def pprint(str_name, val_req, val_obt, str_unit="", str_format="s"):
line = " {:>8s}".format(str_name)
line += (
" {:>9s}".format("-")
if val_req is None
else " {:>9{p}}".format(val_req, p=str_format)
)
line += " {:>9{p}}".format(val_obt, p=str_format)
line += " " + str_unit
print(line)
c = self.config # Short-hand
print("\nReference signal `ref_X*`")
print("─────────────────────────\n")
print(" REQUESTED OBTAINED")
pprint(
"waveform",
None if waveform is None else waveform.name,
c.ref_waveform.name,
)
pprint("freq", freq, c.ref_freq, "Hz", ",.3f")
pprint("offset", V_offset, c.ref_V_offset, "V", ".3f")
pprint("ampl", V_ampl_RMS, c.ref_V_ampl_RMS, "V_RMS", ".3f")
pprint("", V_ampl, c.ref_V_ampl, "V", ".3f")
pprint("N_LUT", None, c.N_LUT, "", "d")
print()
if c.ref_is_clipping_HI:
print(" !! Clipping HI !!")
if c.ref_is_clipping_LO:
print(" !! Clipping LO !!")
if c.ref_is_clipping_HI or c.ref_is_clipping_LO:
print()
return True
# --------------------------------------------------------------------------
# read_until_EOM
# --------------------------------------------------------------------------
def read_until_EOM(self) -> bytes:
"""Reads from the serial port until the EOM sentinel is found or until
a timeout occurs. Any left-over bytes after the EOM will be remembered
and prefixed to the next `read_until_EOM()` call. This method is
blocking. Read `Behind the scenes` for more information on the use
of this method in multithreaded scenarios.
Returns:
The read contents as type `bytes`.
Behind the scenes:
Reading happens in bursts whenever any new bytes are waiting in the
serial-in buffer of the OS. When no bytes are waiting, this method
`read_until_EOM()` will sleep 0.01 s, before trying again. All read
bytes will be collected in a single bytearray and tested for the EOM
sentinel.
Even though this method itself is blocking (in its caller thread),
other threads will be able to get processed by the Python
Interpreter because of the small sleep period. The sleep period will
free up the caller thread from the Python GIL.
See comment by Gabriel Staples
https://stackoverflow.com/questions/17553543/pyserial-non-blocking-read-loop/38758773
"""
# pylint: disable=protected-access
timeout = serial.Timeout(self.ser._timeout)
c = bytearray(self.read_until_left_over_bytes)
idx_EOM = -1
while True:
try:
if self.ser.in_waiting > 0:
new_bytes = self.ser.read(self.ser.in_waiting)
if new_bytes:
# print(len(new_bytes))
c.extend(new_bytes)
idx_EOM = c.find(self.config.EOM)
if idx_EOM > -1:
# print("_____EOM")
N_left_over_bytes_after_EOM = (
len(c) - idx_EOM - self.config.N_BYTES_EOM
)
if N_left_over_bytes_after_EOM:
left_over_bytes = c[-N_left_over_bytes_after_EOM:]
c = c[:-N_left_over_bytes_after_EOM]
# print(
# "LEFT OVER BYTES: %d"
# % N_left_over_bytes_after_EOM
# )
else:
left_over_bytes = bytearray()
self.read_until_left_over_bytes = left_over_bytes
break
# Do not hog the CPU
Time.sleep(0.01)
except Exception as err:
pft(err)
break
if timeout.expired():
break
return bytes(c)
# --------------------------------------------------------------------------
# listen_to_lockin_amp
# --------------------------------------------------------------------------
def listen_to_lockin_amp(
self,
) -> Tuple[
bool, Union[int, float], np.ndarray, np.ndarray, np.ndarray, np.ndarray
]:
"""Reads incoming data packets coming from the lock-in amp. This method
is blocking until it receives an EOM (end-of-message) sentinel or until
it times out.
Returns:
Tuple (
success: bool
counter: int | numpy.nan
time : numpy.ndarray, units [us]
ref_X : numpy.ndarray, units [non-dim]
ref_Y : numpy.ndarray, units [non-dim]
sig_I : numpy.ndarray, units [V]
)
"""
failed = False, None, [np.nan], [np.nan], [np.nan], [np.nan]
c = self.config # Shorthand alias
ans_bytes = self.read_until_EOM()
# dprint("EOM found with %i bytes and..." % len(ans_bytes))
if not ans_bytes[: c.N_BYTES_SOM] == c.SOM:
dprint("'%s' I/O ERROR: No SOM found" % self.name)
return failed
# dprint("SOM okay")
if not len(ans_bytes) == c.N_BYTES_TX_BUFFER:
dprint(
"'%s' I/O ERROR: Expected %i bytes but received %i"
% (self.name, c.N_BYTES_TX_BUFFER, len(ans_bytes))
)
return failed