Skip to content

Latest commit

 

History

History
154 lines (97 loc) · 3.55 KB

README.rst

File metadata and controls

154 lines (97 loc) · 3.55 KB

sedna

Current PyPi Version Supported Python Versions codecov tests style

pip install sedna

Simple interface to Orion hyperparameter search, no storage, no setup required, sedna gives you back the full control over the optimization process.

Leverage Orion optimizers

  • Random Search
  • Grid Search
  • Hyperband
  • ASHA
  • BOHB
  • DEHB
  • Population Based Training (PBT)
  • Population Based Bandits (PB2)
  • TPE
  • Ax
  • Evolution-ES
  • MOFA
  • Nevergrad
  • HEBO

Simplified space definition

As decorated function

@hyperparameter(a=uniform(0, 1), b=uniform(1, 2))
def objective(a, b):
    return a + b

As annotated function

def objective(a: uniform(0, 1), b: uniform(1, 2)) -> float:
    return a + b

As dataclass

@dataclass
class MySpace:
    a: uniform(0, 1) = 0
    b: uniform(1, 2) = 1

Gives you back the power over the optimization process

Setup your own workflow

from sedna.core.space import fidelity, get_space, hyperparameter, uniform
from sedna.core.hunt import Optimize


@hyperparameter(epoch=fidelity(2, 10, base=2), a=uniform(0, 1), b=uniform(1, 2))
def fun(epoch, a, b):
   return (a + b) / epoch


def main():
   space = get_space(fun)

   opt = Optimize("hyperband", space, max_trials=10)

   while not opt.is_done():
      samples = opt.suggest(2)

      for sample in samples:
         result = fun(**sample.params)

         opt.observe(sample, result)

Integrate it with your current workflow

from sedna.core.space import fidelity, get_space, hyperparameter, uniform
from sedna.core.hunt import Optimize


@hyperparameter(epoch=fidelity(2, 10, base=2), a=uniform(0, 1), b=uniform(1, 2))
def fun(epoch, a, b):
   return (a + b) / epoch


def main(njob):

   import submitit

   executor = submitit.AutoExecutor(folder="log_test")
   executor.update_parameters(timeout_min=1, slurm_partition="dev")

   opt = Optimize("hyperband", space, max_trials=10)

   while not opt.is_done():
      samples = opt.suggest(njob)
      futures = []

      for sample in samples:
         job = executor.submit(fun, **sample.params)
         futures.append((sample, job)

      for sample, future in futures:
         result = job.result()
         opt.observe(sample, result)