Skip to content

Latest commit

 

History

History
113 lines (81 loc) · 2.63 KB

File metadata and controls

113 lines (81 loc) · 2.63 KB

ImageToScribble

Examples

Use the tool directly (without agent)

from agentlego.apis import load_tool

# load tool
tool = load_tool('ImageToScribble', device='cuda')

# apply tool
scribble = tool('examples/demo.png')
print(scribble)

With Lagent

from lagent import ReAct, GPTAPI, ActionExecutor
from agentlego.apis import load_tool

# load tools and build agent
# please set `OPENAI_API_KEY` in your environment variable.
tool = load_tool('ImageToScribble', device='cuda').to_lagent()
agent = ReAct(GPTAPI(temperature=0.), action_executor=ActionExecutor([tool]))

# agent running with the tool.
img_path = 'examples/demo.png'
ret = agent.chat(f'Please draw the scribble sketch of the image `{img_path}`')
for step in ret.inner_steps[1:]:
    print('------')
    print(step['content'])

Set up

Before using the tool, please confirm you have installed the related dependencies by the below commands.

pip install -U controlnet_aux

Reference

The tool use controlnet_aux to generate an auxiliary scribble sketch that can be used in the ControlNet.

ScribbleTextToImage

Examples

Download the demo resource

wget http://download.openmmlab.com/agentlego/scribble.png

Use the tool directly (without agent)

from agentlego.apis import load_tool

# load tool
tool = load_tool('ScribbleTextToImage', device='cuda')

# apply tool
image = tool('scribble.png', 'a pair of cartoon style pets')
print(image)

With Lagent

from lagent import ReAct, GPTAPI, ActionExecutor
from agentlego.apis import load_tool

# load tools and build agent
# please set `OPENAI_API_KEY` in your environment variable.
tool = load_tool('ScribbleTextToImage', device='cuda').to_lagent()
agent = ReAct(GPTAPI(temperature=0.), action_executor=ActionExecutor([tool]))

# agent running with the tool.
img_path = 'scribble.png'
ret = agent.chat(f'According to the scribble sketch `{img_path}`, draw a pair of cartoon style cat and dog.')
for step in ret.inner_steps[1:]:
    print('------')
    print(step['content'])

Set up

Before using the tool, please confirm you have installed the related dependencies by the below commands.

pip install -U diffusers

Reference

This tool uses a Control Net model in default settings. See the following paper for details.

@misc{zhang2023adding,
      title={Adding Conditional Control to Text-to-Image Diffusion Models},
      author={Lvmin Zhang and Maneesh Agrawala},
      year={2023},
      eprint={2302.05543},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}