- Navigate to your Eagle home directory or scratch directory using
cd ~/
or
cd /scratch/$USER/
- Clone the github repo into the directory you chose
git clone https://github.com/NREL/HPC
- Navigate to the repo
cd ./HPC/general/Optimized_TF/
- To install TensorFlow 2.4.0 with Python 3.8 for GPUS run the following
- a) load the appropriate modules
module purge module use /nopt/nrel/apps/modules/test/modulefiles/ module load conda module load gcc/7.4.0 module load cudnn/8.0.5/cuda-10.2
- b) build a predefined conda environment
conda env create -f py38tf24.yml
- c) Active the conda environment
source activate py38tf24
- d) Install the precompiled TensorFlow installation from a wheel
pip install --upgrade --no-deps --force-reinstall /nopt/nrel/apps/wheels/tensorflow-2.4.0-cp38-cp38-linux_x86_64.whl
- e) If you are on an allocated or interactive node you can test the install by running
python3 -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))"
- To install TensorFlow 2.3.2 with Python 3.8 for GPUS run the following
- a) load the appropriate modules
module purge module use /nopt/nrel/apps/modules/centos74/modulefiles/ module load gcc/7.4.0 module load cuda/10.0.130 module load cudnn/7.4.2/cuda-10.0 module load conda
- b) build a predefined conda environment
conda env create -f py38tf23.yml
- c) Activate the conda environment
source activate py38tf23
- d) Install the precompiled TensorFlow installation from a wheel
pip install --upgrade --no-deps --force-reinstall /nopt/nrel/apps/wheels/tensorflow-2.3.2-cp38-cp38-linux_x86_64.whl
- e) If you are on an allocated or interactive node you can test the install by running
python3 -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))"
- To install TensorFlow 2.2.x with Python 3.7 for GPUs run the following
- a) load the appropriate modules
module purge module use /nopt/nrel/apps/modules/centos74/modulefiles/ module load gcc/7.4.0 module load cuda/10.0.130 module load cudnn/7.4.2/cuda-10.0 module load conda
- b) build a predefined conda environment
conda env create -f py37tf22.yml
- c) Active the conda environment
source activate py37tf22
- d) Install the precompiled TensorFlow installation from a wheel
or
pip install --upgrade --no-deps --force-reinstall /nopt/nrel/apps/wheels/tensorflow-2.2.1-cp37-cp37m-linux_x86_64.whl
pip install --upgrade --no-deps --force-reinstall /nopt/nrel/apps/wheels/tensorflow-2.2.1-cp37-cp37m-linux_x86_64.whl
- e) If you are on an allocated or interactive node you can test the install by running
python3 -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))"
- To install TensorFlow 2.0.0 with Python 3.7 for GPUs run the following
-
a) load the appropriate modules
module purge module use /nopt/nrel/apps/modules/centos74/modulefiles/ module load gcc/7.3.0 module load cuda/10.0.130 module load cudnn/7.4.2/cuda-10.0 module load conda
-
b) build a predefined conda environment
conda env create -f py37tf20.yml
-
c) Active the conda environment
source activate py37tf20
-
d) Install the precompiled TensorFlow installation from a wheel
pip install --upgrade --no-deps --force-reinstall /nopt/nrel/apps/wheels/tensorflow-2.0.0-cp37-cp37m-linux_x86_64.whl
-
e) If you are on an allocated or interactive node you can test the install by running
python3 -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))"