-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
blazeface_fpn.py
213 lines (195 loc) · 6.56 KB
/
blazeface_fpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn.initializer import KaimingNormal
from ppdet.core.workspace import register, serializable
from ..shape_spec import ShapeSpec
__all__ = ['BlazeNeck']
def hard_swish(x):
return x * F.relu6(x + 3) / 6.
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
num_groups=1,
act='relu',
conv_lr=0.1,
conv_decay=0.,
norm_decay=0.,
norm_type='bn',
name=None):
super(ConvBNLayer, self).__init__()
self.act = act
self._conv = nn.Conv2D(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=num_groups,
weight_attr=ParamAttr(
learning_rate=conv_lr, initializer=KaimingNormal()),
bias_attr=False)
if norm_type in ['sync_bn', 'bn']:
self._batch_norm = nn.BatchNorm2D(out_channels)
def forward(self, x):
x = self._conv(x)
x = self._batch_norm(x)
if self.act == "relu":
x = F.relu(x)
elif self.act == "relu6":
x = F.relu6(x)
elif self.act == 'leaky':
x = F.leaky_relu(x)
elif self.act == 'hard_swish':
x = hard_swish(x)
return x
class FPN(nn.Layer):
def __init__(self, in_channels, out_channels, name=None):
super(FPN, self).__init__()
self.conv1_fpn = ConvBNLayer(
in_channels,
out_channels // 2,
kernel_size=1,
padding=0,
stride=1,
act='leaky',
name=name + '_output1')
self.conv2_fpn = ConvBNLayer(
in_channels,
out_channels // 2,
kernel_size=1,
padding=0,
stride=1,
act='leaky',
name=name + '_output2')
self.conv3_fpn = ConvBNLayer(
out_channels // 2,
out_channels // 2,
kernel_size=3,
padding=1,
stride=1,
act='leaky',
name=name + '_merge')
def forward(self, input):
output1 = self.conv1_fpn(input[0])
output2 = self.conv2_fpn(input[1])
up2 = F.upsample(
output2, size=output1.shape[-2:], mode='nearest')
output1 = paddle.add(output1, up2)
output1 = self.conv3_fpn(output1)
return output1, output2
class SSH(nn.Layer):
def __init__(self, in_channels, out_channels, name=None):
super(SSH, self).__init__()
assert out_channels % 4 == 0
self.conv0_ssh = ConvBNLayer(
in_channels,
out_channels // 2,
kernel_size=3,
padding=1,
stride=1,
act=None,
name=name + 'ssh_conv3')
self.conv1_ssh = ConvBNLayer(
out_channels // 2,
out_channels // 4,
kernel_size=3,
padding=1,
stride=1,
act='leaky',
name=name + 'ssh_conv5_1')
self.conv2_ssh = ConvBNLayer(
out_channels // 4,
out_channels // 4,
kernel_size=3,
padding=1,
stride=1,
act=None,
name=name + 'ssh_conv5_2')
self.conv3_ssh = ConvBNLayer(
out_channels // 4,
out_channels // 4,
kernel_size=3,
padding=1,
stride=1,
act='leaky',
name=name + 'ssh_conv7_1')
self.conv4_ssh = ConvBNLayer(
out_channels // 4,
out_channels // 4,
kernel_size=3,
padding=1,
stride=1,
act=None,
name=name + 'ssh_conv7_2')
def forward(self, x):
conv0 = self.conv0_ssh(x)
conv1 = self.conv1_ssh(conv0)
conv2 = self.conv2_ssh(conv1)
conv3 = self.conv3_ssh(conv2)
conv4 = self.conv4_ssh(conv3)
concat = paddle.concat([conv0, conv2, conv4], axis=1)
return F.relu(concat)
@register
@serializable
class BlazeNeck(nn.Layer):
def __init__(self, in_channel, neck_type="None", data_format='NCHW'):
super(BlazeNeck, self).__init__()
self.neck_type = neck_type
self.reture_input = False
self._out_channels = in_channel
if self.neck_type == 'None':
self.reture_input = True
if "fpn" in self.neck_type:
self.fpn = FPN(self._out_channels[0],
self._out_channels[1],
name='fpn')
self._out_channels = [
self._out_channels[0] // 2, self._out_channels[1] // 2
]
if "ssh" in self.neck_type:
self.ssh1 = SSH(self._out_channels[0],
self._out_channels[0],
name='ssh1')
self.ssh2 = SSH(self._out_channels[1],
self._out_channels[1],
name='ssh2')
self._out_channels = [self._out_channels[0], self._out_channels[1]]
def forward(self, inputs):
if self.reture_input:
return inputs
output1, output2 = None, None
if "fpn" in self.neck_type:
backout_4, backout_1 = inputs
output1, output2 = self.fpn([backout_4, backout_1])
if self.neck_type == "only_fpn":
return [output1, output2]
if self.neck_type == "only_ssh":
output1, output2 = inputs
feature1 = self.ssh1(output1)
feature2 = self.ssh2(output2)
return [feature1, feature2]
@property
def out_shape(self):
return [
ShapeSpec(channels=c)
for c in [self._out_channels[0], self._out_channels[1]]
]