forked from amices/mice
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DESCRIPTION
133 lines (133 loc) · 3.29 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
Package: mice
Type: Package
Version: 2.17
Title: Multivariate Imputation by Chained Equations
Date: 2013-05-11
Authors@R: c(person("Stef", "van Buuren", role = c("aut","cre"),
email = "[email protected]"),
person("Karin", "Groothuis-Oudshoorn", role = "aut",
email = "[email protected]"),
person("Alexander", "Robitzsch", role = "ctb",
email = "[email protected]"),
person("Gerko","Vink", role = "ctb",
email = "[email protected]"),
person("Lisa","Doove", role = "ctb",
email = "[email protected]"),
person("Shahab","Jolani", role = "ctb",
email = "[email protected]"))
Author: Stef van Buuren and Karin Groothuis-Oudshoorn, with contributions from
Alexander Robitzsch, Gerko Vink, Shahab Jolani and Lisa Doove
Maintainer: Stef van Buuren <[email protected]>
Depends:
R (>= 2.10.0),
methods,
lattice,
MASS,
nnet
Imports:
rpart
Suggests:
AGD,
gamlss,
lme4,
mitools,
nlme,
pan,
survival,
Zelig
Description: Multiple imputation using Fully Conditional Specification (FCS)
implemented by the MICE algorithm. Each variable has its own imputation
model. Built-in imputation models are provided for continuous data
(predictive mean matching, normal), binary data (logistic regression),
unordered categorical data (polytomous logistic regression) and ordered
categorical data (proportional odds). MICE can also impute continuous
two-level data (normal model, pan, second-level variables). Passive
imputation can be used to maintain consistency between variables. Various
diagnostic plots are available to inspect the quality of the imputations.
License: GPL-2 | GPL-3
LazyLoad: yes
LazyData: yes
URL: http://www.stefvanbuuren.nl , http://www.multiple-imputation.com
Collate:
'as.r'
'auxiliary.r'
'boys.r'
'bwplot.r'
'cbind.r'
'cc.r'
'cci.r'
'ccn.r'
'complete.r'
'densityplot.r'
'df.residual.r'
'expandcov.r'
'fdd.r'
'fdgs.r'
'flux.r'
'getfit.r'
'ibind.r'
'internal.r'
'is.r'
'leiden85.r'
'lm.r'
'long2mids.r'
'mammalsleep.r'
'md.pairs.r'
'md.pattern.r'
'mdc.r'
'mice.r'
'mice.df.r'
'mice.impute.2l.norm.r'
'mice.impute.2l.pan.r'
'mice.impute.2lonly.mean.r'
'mice.impute.2lonly.norm.r'
'mice.impute.2lony.pmm.r'
'mice.impute.cart.r'
'mice.impute.lda.r'
'mice.impute.logreg.r'
'mice.impute.mean.r'
'mice.impute.norm.boot.r'
'mice.impute.norm.nob.r'
'mice.impute.norm.predict.r'
'mice.impute.norm.r'
'mice.impute.passive.r'
'mice.impute.pmm.r'
'mice.impute.polr.r'
'mice.impute.polyreg.r'
'mice.impute.quadratic.r'
'mice.impute.ri.r'
'mice.impute.sample.r'
'mice.mids.r'
'mice.theme.r'
'mids.r'
'mids2mplus.r'
'mids2spss.r'
'mipo.r'
'mira.r'
'nelsonaalen.r'
'nhanes.r'
'nhanes2.r'
'pattern1.r'
'plot.r'
'pool.compare.r'
'pool.r'
'pool.r.squared.r'
'pool.scalar.r'
'popmis.r'
'pops.r'
'potthoffroy.r'
'print.r'
'quickpred.r'
'rbind.r'
'rm.whitespace.r'
'selfreport.r'
'squeeze.r'
'stripplot.r'
'summary.r'
'supports.transparent.r'
'tbc.r'
'walking.r'
'windspeed.r'
'with.r'
'xyplot.r'
'zzz.r'