-
Notifications
You must be signed in to change notification settings - Fork 11
/
evaluate_openimages.py
353 lines (270 loc) · 14.5 KB
/
evaluate_openimages.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import torch
import torch.nn as nn
import torch.autograd as autograd
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import model as model
import util_openimages as util
from config import opt
import numpy as np
import random
import time
import os
import socket
from torch.utils.data import DataLoader
import h5py
import pickle
import logging
import csv
import pandas as pd
if not os.path.exists("logs"):
os.system("mkdir -p " + "logs") #os.mkdir("logs")
log_filename = os.path.join("logs",opt.SESSION + '.log')
logging.basicConfig(level=logging.INFO, filename=log_filename)
print(opt)
logging.info(opt)
#############################################
#setting up seeds
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
np.random.seed(opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
if opt.cuda:
torch.cuda.manual_seed(opt.manualSeed)
torch.cuda.manual_seed_all(opt.manualSeed)
torch.set_default_tensor_type('torch.FloatTensor')
cudnn.benchmark = True # For speed i.e, cudnn autotuner
########################################################
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
data = util.DATA_LOADER(opt) ### INTIAL DATALOADER ###
print('===> Loading datasets')
print(opt.src)
print('===> Result path ')
print(opt.save_path)
print('===> total samples')
print(data.ntrain)
logging.info('===> Loading datasets')
logging.info(opt.src)
logging.info('===> total samples')
logging.info(data.ntrain)
model_vgg = None
model_vgg = model.vgg_net()
model_test = model.BiAM(opt, dim_feature=[196,512])
print(model_test)
logging.info(model_test)
name='NUS_WIDE_{}'.format(opt.SESSION)
opt.save_path += '/'+name
if opt.cuda:
model_test = model_test.cuda()
data.vecs_400 = data.vecs_400.cuda()
data.vecs_7186 = data.vecs_7186.cuda()
if model_vgg is not None:
model_vgg.cuda()
if not opt.vgg_base_trainmode:
model_vgg.eval()
gzsl_vecs = torch.cat([data.vecs_7186,data.vecs_400],0)
print("=======================EVALUATION MODE=======================")
logging.info("=======================EVALUATION MODE=======================")
test_start_time = time.time()
gzsl_model_path="pretrained_weights/model_best_gzsl.pth"
zsl_model_path="pretrained_weights/model_best_zsl.pth"
paths = [gzsl_model_path, zsl_model_path]
for model_path in paths:
print(model_path)
logging.info(model_path)
model_test.load_state_dict(torch.load(model_path))
logging.info("model loading finished")
model_test.eval()
src = opt.src
test_loc = os.path.join(src, 'OpenImages', 'test_features_lesa', 'OPENIMAGES_TEST_CONV5_4_LESA_VGG_NO_CENTERCROP.h5')
test_features = h5py.File(test_loc, 'r')
test_feature_keys = list(test_features.keys())
image_names = np.unique(np.array([m.split('-')[0] for m in test_feature_keys]))
ntest = len(image_names)
test_batch_size = opt.test_batch_size
path_top_unseen = os.path.join(src, 'OpenImages','2018_04', 'top_400_unseen.csv')
df_top_unseen = pd.read_csv(path_top_unseen, header=None)
idx_top_unseen = df_top_unseen.values[:, 0]
assert len(idx_top_unseen) == 400
print('===> total TEST samples')
print(ntest)
logging.info('===> total TEST samples')
logging.info(ntest)
prediction_400 = torch.empty(ntest,400)
prediction_7586 = torch.empty(ntest,7586)
prediction_7186 = torch.empty(ntest,7186)
lab_400 = torch.empty(ntest,400)
lab_7586 = torch.empty(ntest,7586)
lab_7186 = torch.empty(ntest,7186)
if model_vgg is not None:
model_vgg.eval()
for m in range(0, ntest, test_batch_size):
strt = m
endt = min(m+test_batch_size, ntest)
bs = endt-strt
c=m
c+=bs
features, labels_7186, labels_2594 = np.empty((bs,512,196)), np.empty((bs,7186)), np.empty((bs,2594))
for i, key in enumerate(image_names[strt:endt]):
features[i,:,:] = np.float32(test_features.get(key+'-features'))
labels_7186[i,:] = np.int32(test_features.get(key+'-seenlabels'))
labels_2594[i,:] = np.int32(test_features.get(key+'-unseenlabels'))
features = torch.from_numpy(features).float()
labels_7186 = torch.from_numpy(labels_7186).long()
labels_400 = torch.from_numpy(labels_2594).long()[:,idx_top_unseen]
labels_7586 = torch.cat((labels_7186,labels_400),1)
with torch.no_grad():
vgg_4096 = model_vgg(features.cuda()) if model_vgg is not None else None
logits_400 = model_test(features.cuda(), data.vecs_400, vgg_4096)
logits_7586 = model_test(features.cuda(), gzsl_vecs, vgg_4096) ##seen-unseen
logits_7186 = model_test(features.cuda(), data.vecs_7186, vgg_4096) ##seen-unseen
prediction_400[strt:endt,:] = logits_400
prediction_7586[strt:endt,:] = logits_7586
prediction_7186[strt:endt,:] = logits_7186
lab_400[strt:endt,:] = labels_400
lab_7586[strt:endt,:] = labels_7586
lab_7186[strt:endt,:] = labels_7186
print(("completed calculating predictions over all {} images".format(c)))
logging.info(("completed calculating predictions over all {} images".format(c)))
############################# SEEN ##############################################
lab_7186 = lab_7186.cuda()
prediction_7186 = prediction_7186.cuda()
temp_7186 = torch.clamp(lab_7186,0,1).sum(1).nonzero().flatten() ## take only the images with positive annotations
lab_7186 = lab_7186[temp_7186]
prediction_7186 = prediction_7186[temp_7186]
## AP ##
temp_lab_7186=(lab_7186!=0)
temp_lab_7186 = torch.clamp(temp_lab_7186,0,1)
mask = temp_lab_7186.sum(0).nonzero().flatten()
map_lab_7186 = lab_7186[:,mask]
imgs_per_label = torch.clamp(map_lab_7186,0,1).sum(0)
map_prediction_7186 = prediction_7186[:,mask]
ap_7186 = util.compute_AP(map_prediction_7186, map_lab_7186)
print('SEEN AP on 4728 classes',torch.mean(ap_7186).item())
logging.info('SEEN AP on 4728 classes:%.4f',torch.mean(ap_7186).item())
weighted_map_7186 = (imgs_per_label.float() * ap_7186).sum()/imgs_per_label.sum().float()
print('WEIGHTED SEEN AP on 4728 classes',weighted_map_7186.item())
logging.info('WEIGHTED SEEN AP on 4728 classes:%.4f',weighted_map_7186.item())
del weighted_map_7186, ap_7186, imgs_per_label, temp_lab_7186, lab_7186, prediction_7186, mask
torch.cuda.empty_cache()
logits_7186_20 = map_prediction_7186.clone()
F1_20_7186,P_20_7186,R_20_7186 = util.compute_F1(map_prediction_7186, map_lab_7186, 'overall', k_val=20)
print('g_k=20',torch.mean(F1_20_7186).item(), torch.mean(P_20_7186).item(), torch.mean(R_20_7186).item())
logging.info('g_k=20:%.4f,%.4f,%.4f',torch.mean(F1_20_7186).item(), torch.mean(P_20_7186).item(), torch.mean(R_20_7186).item())
del map_prediction_7186
torch.cuda.empty_cache()
logits_7186_5 = logits_7186_20.clone()
F1_10_7186,P_10_7186,R_10_7186 = util.compute_F1(logits_7186_20, map_lab_7186, 'overall', k_val=10)
print('g_k=10',torch.mean(F1_10_7186).item(), torch.mean(P_10_7186).item(), torch.mean(R_10_7186).item())
logging.info('g_k=10:%.4f,%.4f,%.4f',torch.mean(F1_10_7186).item(), torch.mean(P_10_7186).item(), torch.mean(R_10_7186).item())
del logits_7186_20
torch.cuda.empty_cache()
logits_7186_1 = logits_7186_5.clone()
F1_5_7186,P_5_7186,R_5_7186 = util.compute_F1(logits_7186_5, map_lab_7186, 'overall', k_val=5)
print('g_k=5',torch.mean(F1_5_7186).item(), torch.mean(P_5_7186).item(), torch.mean(R_5_7186).item())
logging.info('g_k=5:%.4f,%.4f,%.4f',torch.mean(F1_5_7186).item(), torch.mean(P_5_7186).item(), torch.mean(R_5_7186).item())
del logits_7186_5
torch.cuda.empty_cache()
F1_1_7186,P_1_7186,R_1_7186 = util.compute_F1(logits_7186_1, map_lab_7186, 'overall', k_val=1)
print('g_k=1',torch.mean(F1_1_7186).item(), torch.mean(P_1_7186).item(), torch.mean(R_1_7186).item())
logging.info('g_k=1:%.4f,%.4f,%.4f',torch.mean(F1_1_7186).item(), torch.mean(P_1_7186).item(), torch.mean(R_1_7186).item())
del logits_7186_1
torch.cuda.empty_cache()
del map_lab_7186, F1_20_7186, P_20_7186, R_20_7186, F1_10_7186, P_10_7186, R_10_7186, F1_5_7186, P_5_7186, R_5_7186, F1_1_7186, P_1_7186, R_1_7186
torch.cuda.empty_cache()
################################################################################################################################
############################# ZSL ##############ß################################
prediction_400 = prediction_400.cuda()
lab_400 = lab_400.cuda()
temp_400 = torch.clamp(lab_400,0,1).sum(1).nonzero().flatten() ## take only the images with positive annotations
lab_400 = lab_400[temp_400]
prediction_400 = prediction_400[temp_400]
logits_400_20 = prediction_400.clone()
logits_400_3 = prediction_400.clone()
logits_400_1 = prediction_400.clone()
ap_400 = util.compute_AP(prediction_400, lab_400)
print('ZSL AP',torch.mean(ap_400).item())
logging.info('ZSL AP: %.4f',torch.mean(ap_400).item())
imgs_per_label = torch.clamp(lab_400,0,1).sum(0)
weighted_map_400 = (imgs_per_label.float() * ap_400).sum()/imgs_per_label.sum().float()
print('WEIGHTED ZSL AP',torch.mean(weighted_map_400).item())
logging.info('WEIGHTED ZSL AP: %.4f',torch.mean(weighted_map_400).item())
F1_20_400,P_20_400,R_20_400 = util.compute_F1(logits_400_20, lab_400, 'overall', k_val=20)
print('k=20',torch.mean(F1_20_400).item(),torch.mean(P_20_400).item(),torch.mean(R_20_400).item())
logging.info('k=20: %.4f,%.4f,%.4f',torch.mean(F1_20_400).item(),torch.mean(P_20_400).item(),torch.mean(R_20_400).item())
del logits_400_20, temp_400
torch.cuda.empty_cache()
F1_10_400,P_10_400,R_10_400 = util.compute_F1(prediction_400, lab_400, 'overall', k_val=10)
print('k=10',torch.mean(F1_10_400).item(),torch.mean(P_10_400).item(),torch.mean(R_10_400).item())
logging.info('k=10: %.4f,%.4f,%.4f',torch.mean(F1_10_400).item(),torch.mean(P_10_400).item(),torch.mean(R_10_400).item())
del prediction_400
torch.cuda.empty_cache()
F1_3_400,P_3_400,R_3_400 = util.compute_F1(logits_400_3, lab_400, 'overall', k_val=3)
print('k=3',torch.mean(F1_3_400).item(),torch.mean(P_3_400).item(),torch.mean(R_3_400).item())
logging.info('k=3: %.4f,%.4f,%.4f',torch.mean(F1_3_400).item(),torch.mean(P_3_400).item(),torch.mean(R_3_400).item())
del logits_400_3
torch.cuda.empty_cache()
F1_1_400,P_1_400,R_1_400 = util.compute_F1(logits_400_1, lab_400, 'overall', k_val=1)
print('k=1',torch.mean(F1_1_400).item(),torch.mean(P_1_400).item(),torch.mean(R_1_400).item())
logging.info('k=1: %.4f,%.4f,%.4f',torch.mean(F1_1_400).item(),torch.mean(P_1_400).item(),torch.mean(R_1_400).item())
del logits_400_1
torch.cuda.empty_cache()
del features, lab_400
torch.cuda.empty_cache()
############################# GZSL ##############################################
lab_7586 = lab_7586.cuda()
prediction_7586 = prediction_7586.cuda()
temp_7586 = torch.clamp(lab_7586,0,1).sum(1).nonzero().flatten() ## take only the images with positive annotations
lab_7586 = lab_7586[temp_7586]
prediction_7586 = prediction_7586[temp_7586]
## AP ##
temp_lab_7586=(lab_7586!=0)
temp_lab_7586 = torch.clamp(temp_lab_7586,0,1)
mask = temp_lab_7586.sum(0).nonzero().flatten()
# imgs_per_label = temp_lab_7586.sum(0)
map_lab_7586 = lab_7586[:,mask]
imgs_per_label = torch.clamp(map_lab_7586,0,1).sum(0)
map_prediction_7586 = prediction_7586[:,mask]
ap_7586 = util.compute_AP(map_prediction_7586, map_lab_7586)
print('GZSL AP on 4728+400 classes',torch.mean(ap_7586).item())
logging.info('GZSL AP on 4728+400 classes:%.4f',torch.mean(ap_7586).item())
weighted_map_7586 = (imgs_per_label.float() * ap_7586).sum()/imgs_per_label.sum().float()
print('WEIGHTED GZSL AP on 4728+400 classes',weighted_map_7586.item())
logging.info('WEIGHTED GZSL AP on 4728+400 classes:%.4f',weighted_map_7586.item())
del weighted_map_7586, ap_7586, imgs_per_label, map_lab_7586, map_prediction_7586, temp_lab_7586, mask
torch.cuda.empty_cache()
logits_7586_20 = prediction_7586.clone()
F1_20_7586,P_20_7586,R_20_7586 = util.compute_F1(prediction_7586, lab_7586, 'overall', k_val=20)
print('g_k=20',torch.mean(F1_20_7586).item(), torch.mean(P_20_7586).item(), torch.mean(R_20_7586).item())
logging.info('g_k=20:%.4f,%.4f,%.4f',torch.mean(F1_20_7586).item(), torch.mean(P_20_7586).item(), torch.mean(R_20_7586).item())
del prediction_7586
torch.cuda.empty_cache()
logits_7586_5 = logits_7586_20.clone()
F1_10_7586,P_10_7586,R_10_7586 = util.compute_F1(logits_7586_20, lab_7586, 'overall', k_val=10)
print('g_k=10',torch.mean(F1_10_7586).item(), torch.mean(P_10_7586).item(), torch.mean(R_10_7586).item())
logging.info('g_k=10:%.4f,%.4f,%.4f',torch.mean(F1_10_7586).item(), torch.mean(P_10_7586).item(), torch.mean(R_10_7586).item())
del logits_7586_20
torch.cuda.empty_cache()
logits_7586_1 = logits_7586_5.clone()
F1_5_7586,P_5_7586,R_5_7586 = util.compute_F1(logits_7586_5, lab_7586, 'overall', k_val=5)
print('g_k=5',torch.mean(F1_5_7586).item(), torch.mean(P_5_7586).item(), torch.mean(R_5_7586).item())
logging.info('g_k=5:%.4f,%.4f,%.4f',torch.mean(F1_5_7586).item(), torch.mean(P_5_7586).item(), torch.mean(R_5_7586).item())
del logits_7586_5
torch.cuda.empty_cache()
F1_1_7586,P_1_7586,R_1_7586 = util.compute_F1(logits_7586_1, lab_7586, 'overall', k_val=1)
print('g_k=1',torch.mean(F1_1_7586).item(), torch.mean(P_1_7586).item(), torch.mean(R_1_7586).item())
logging.info('g_k=1:%.4f,%.4f,%.4f',torch.mean(F1_1_7586).item(), torch.mean(P_1_7586).item(), torch.mean(R_1_7586).item())
del logits_7586_1
torch.cuda.empty_cache()
del lab_7586, F1_20_7586, P_20_7586, R_20_7586, F1_10_7586, P_10_7586, R_10_7586, F1_5_7586, P_5_7586, R_5_7586, F1_1_7586, P_1_7586, R_1_7586
torch.cuda.empty_cache()
print("------------------------------------------------------------------")
print("TEST Time: {:.4f}".format(time.time()-test_start_time))
print("------------------------------------------------------------------")
logging.info("------------------------------------------------------------------")
logging.info("TEST Time: {:.4f}".format(time.time()-test_start_time))
logging.info("------------------------------------------------------------------")