-
Notifications
You must be signed in to change notification settings - Fork 38
/
metrics_acdc.py
348 lines (243 loc) · 12.5 KB
/
metrics_acdc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
"""
Code for evaluation of acdc metrics. Writes full report of experiment performance.
Authors:
Christian F. Baumgartner ([email protected])
Lisa. M. Koch ([email protected])
Extended from code made available by
author: Clément Zotti ([email protected])
date: April 2017
Link: http://acdc.creatis.insa-lyon.fr
"""
import os
from glob import glob
import re
import argparse
import pandas as pd
from medpy.metric.binary import hd, dc, assd
import numpy as np
import scipy.stats as stats
import utils
import matplotlib.pyplot as plt
import seaborn as sns
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
#
# Utils functions used to sort strings into a natural order
#
def conv_int(i):
return int(i) if i.isdigit() else i
def natural_order(sord):
"""
Sort a (list,tuple) of strings into natural order.
Ex:
['1','10','2'] -> ['1','2','10']
['abc1def','ab10d','b2c','ab1d'] -> ['ab1d','ab10d', 'abc1def', 'b2c']
"""
if isinstance(sord, tuple):
sord = sord[0]
return [conv_int(c) for c in re.split(r'(\d+)', sord)]
def compute_metrics_on_directories_raw(dir_gt, dir_pred):
"""
Calculates a number of measures from the predicted and ground truth segmentations:
- Dice
- Hausdorff distance
- Average surface distance
- Predicted volume
- Volume error w.r.t. ground truth
:param dir_gt: Directory of the ground truth segmentation maps.
:param dir_pred: Directory of the predicted segmentation maps.
:return: Pandas dataframe with all measures in a row for each prediction and each structure
"""
filenames_gt = sorted(glob(os.path.join(dir_gt, '*')), key=natural_order)
filenames_pred = sorted(glob(os.path.join(dir_pred, '*')), key=natural_order)
cardiac_phase = []
file_names = []
structure_names = []
# 5 measures per structure:
dices_list = []
hausdorff_list = []
assd_list = []
vol_list = []
vol_err_list = []
structures_dict = {1: 'RV', 2: 'Myo', 3: 'LV'}
for p_gt, p_pred in zip(filenames_gt, filenames_pred):
if os.path.basename(p_gt) != os.path.basename(p_pred):
raise ValueError("The two files don't have the same name"
" {}, {}.".format(os.path.basename(p_gt),
os.path.basename(p_pred)))
# load ground truth and prediction
gt, _, header = utils.load_nii(p_gt)
pred, _, _ = utils.load_nii(p_pred)
zooms = header.get_zooms()
# calculate measures for each structure
for struc in [3,1,2]:
gt_binary = (gt == struc) * 1
pred_binary = (pred == struc) * 1
volpred = pred_binary.sum() * np.prod(zooms) / 1000.
volgt = gt_binary.sum() * np.prod(zooms) / 1000.
vol_list.append(volpred)
vol_err_list.append(volpred - volgt)
if np.sum(gt_binary) == 0 and np.sum(pred_binary) == 0:
dices_list.append(1)
assd_list.append(0)
hausdorff_list.append(0)
elif np.sum(pred_binary) > 0 and np.sum(gt_binary) == 0 or np.sum(pred_binary) == 0 and np.sum(gt_binary) > 0:
logging.warning('Structure missing in either GT (x)or prediction. ASSD and HD will not be accurate.')
dices_list.append(0)
assd_list.append(1)
hausdorff_list.append(1)
else:
hausdorff_list.append(hd(gt_binary, pred_binary, voxelspacing=zooms, connectivity=1))
assd_list.append(assd(pred_binary, gt_binary, voxelspacing=zooms, connectivity=1))
dices_list.append(dc(gt_binary, pred_binary))
cardiac_phase.append(os.path.basename(p_gt).split('.nii.gz')[0].split('_')[-1])
file_names.append(os.path.basename(p_pred))
structure_names.append(structures_dict[struc])
df = pd.DataFrame({'dice': dices_list, 'hd': hausdorff_list, 'assd': assd_list,
'vol': vol_list, 'vol_err': vol_err_list,
'phase': cardiac_phase, 'struc': structure_names, 'filename': file_names})
return df
def print_latex_tables(df, eval_dir):
"""
Report geometric measures in latex tables to be used in the ACDC challenge paper.
Prints mean (+- std) values for Dice and ASSD for all structures.
:param df:
:param eval_dir:
:return:
"""
out_file = os.path.join(eval_dir, 'latex_tables.txt')
with open(out_file, "w") as text_file:
text_file.write('\n\n-------------------------------------------------------------------------------------\n')
text_file.write('ACDC challenge paper: table 1\n')
text_file.write('-------------------------------------------------------------------------------------\n\n')
# prints mean (+- std) values for Dice and ASSD, all structures, averaged over both phases.
header_string = ' & '
line_string = 'METHOD '
for s_idx, struc_name in enumerate(['LV', 'RV', 'Myo']):
for measure in ['dice', 'assd']:
header_string += ' & {} ({}) '.format(measure, struc_name)
dat = df.loc[df['struc'] == struc_name]
if measure == 'dice':
line_string += ' & {:.3f}\,({:.3f}) '.format(np.mean(dat[measure]), np.std(dat[measure]))
else:
line_string += ' & {:.2f}\,({:.2f}) '.format(np.mean(dat[measure]), np.std(dat[measure]))
if s_idx < 2:
header_string += ' & '
line_string += ' & '
header_string += ' \\\\ \n'
line_string += ' \\\\ \n'
text_file.write(header_string)
text_file.write(line_string)
text_file.write('\n\n-------------------------------------------------------------------------------------\n')
text_file.write('ACDC challenge paper: table 2\n')
text_file.write('-------------------------------------------------------------------------------------\n\n')
# table 2: mean (+- std) values for Dice, ASSD and HD, all structures, both phases separately
for idx, struc_name in enumerate(['LV', 'RV', 'Myo']):
# new line
header_string = ' & '
line_string = '({}) '.format(struc_name)
for p_idx, phase in enumerate(['ED', 'ES']):
for measure in ['dice', 'assd', 'hd']:
header_string += ' & {} ({}) '.format(phase, measure)
dat = df.loc[(df['phase'] == phase) & (df['struc'] == struc_name)]
if measure == 'dice':
line_string += ' & {:.3f}\,({:.3f}) '.format(np.mean(dat[measure]), np.std(dat[measure]))
else:
line_string += ' & {:.2f}\,({:.2f}) '.format(np.mean(dat[measure]), np.std(dat[measure]))
if p_idx == 0:
header_string += ' & '
line_string += ' & '
header_string += ' \\\\ \n'
line_string += ' \\\\ \n'
if idx == 0:
text_file.write(header_string)
text_file.write(line_string)
return 0
def boxplot_metrics(df, eval_dir):
"""
Create summary boxplots of all geometric measures.
:param df:
:param eval_dir:
:return:
"""
boxplots_file = os.path.join(eval_dir, 'boxplots.eps')
fig, axes = plt.subplots(3, 1)
fig.set_figheight(14)
fig.set_figwidth(7)
sns.boxplot(x='struc', y='dice', hue='phase', data=df, palette="PRGn", ax=axes[0])
sns.boxplot(x='struc', y='hd', hue='phase', data=df, palette="PRGn", ax=axes[1])
sns.boxplot(x='struc', y='assd', hue='phase', data=df, palette="PRGn", ax=axes[2])
plt.savefig(boxplots_file)
plt.close()
return 0
def print_stats(df, eval_dir):
out_file = os.path.join(eval_dir, 'summary_report.txt')
with open(out_file, "w") as text_file:
text_file.write('\n\n-------------------------------------------------------------------------------------\n')
text_file.write('Summary of geometric evaluation measures. \n')
text_file.write('The following measures should be equivalent to those ')
text_file.write('obtained from the online evaluation platform. \n')
text_file.write('-------------------------------------------------------------------------------------\n\n')
for struc_name in ['LV', 'RV', 'Myo']:
text_file.write(struc_name)
text_file.write('\n')
for cardiac_phase in ['ED', 'ES']:
text_file.write(' {}\n'.format(cardiac_phase))
dat = df.loc[(df['phase'] == cardiac_phase) & (df['struc'] == struc_name)]
for measure_name in ['dice', 'hd', 'assd']:
text_file.write(' {} -- mean (std): {:.3f} ({:.3f}) \n'.format(measure_name,
np.mean(dat[measure_name]), np.std(dat[measure_name])))
ind_med = np.argsort(dat[measure_name]).iloc[len(dat[measure_name])//2]
text_file.write(' median {}: {:.3f} ({})\n'.format(measure_name,
dat[measure_name].iloc[ind_med], dat['filename'].iloc[ind_med]))
ind_worst = np.argsort(dat[measure_name]).iloc[0]
text_file.write(' worst {}: {:.3f} ({})\n'.format(measure_name,
dat[measure_name].iloc[ind_worst], dat['filename'].iloc[ind_worst]))
ind_best = np.argsort(dat[measure_name]).iloc[-1]
text_file.write(' best {}: {:.3f} ({})\n'.format(measure_name,
dat[measure_name].iloc[ind_best], dat['filename'].iloc[ind_best]))
text_file.write('\n\n-------------------------------------------------------------------------------------\n')
text_file.write('Ejection fraction correlation between prediction and ground truth\n')
text_file.write('-------------------------------------------------------------------------------------\n\n')
for struc_name in ['LV', 'RV']:
lv = df.loc[df['struc'] == struc_name]
ED_vol = np.array(lv.loc[lv['phase'] == 'ED']['vol'])
ES_vol = np.array(lv.loc[(lv['phase'] == 'ES')]['vol'])
EF_pred = (ED_vol - ES_vol) / ED_vol
ED_vol_gt = ED_vol - np.array(lv.loc[lv['phase'] == 'ED']['vol_err'])
ES_vol_gt = ES_vol - np.array(lv.loc[(lv['phase'] == 'ES')]['vol_err'])
EF_gt = (ED_vol_gt - ES_vol_gt) / ED_vol_gt
LV_EF_corr = stats.pearsonr(EF_pred, EF_gt)
text_file.write('{}, EF corr: {}\n\n'.format(struc_name, LV_EF_corr[0]))
def main(path_gt, path_pred, eval_dir):
"""
Calculate all sorts of geometric and clinical evaluation measures from the predicted segmentations.
:param path_gt: path to ground truth segmentations
:param path_pred: path to predicted segmentations
:param eval_dir: directory where reports should be written
:return:
"""
if not os.path.exists(eval_dir):
os.makedirs(eval_dir)
if os.path.isdir(path_gt) and os.path.isdir(path_pred):
df = compute_metrics_on_directories_raw(path_gt, path_pred)
print_stats(df, eval_dir)
print_latex_tables(df, eval_dir)
boxplot_metrics(df, eval_dir)
logging.info('------------Average Dice Figures----------')
logging.info('Dice 1 (LV): %f' % np.mean(df.loc[df['struc'] == 'LV']['dice']))
logging.info('Dice 2 (RC): %f' % np.mean(df.loc[df['struc'] == 'RV']['dice']))
logging.info('Dice 3 (Myo): %f' % np.mean(df.loc[df['struc'] == 'Myo']['dice']))
logging.info('Mean dice: %f' % np.mean(np.mean(df['dice'])))
logging.info('------------------------------------------')
else:
raise ValueError(
"The paths given needs to be two directories or two files.")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Script to compute ACDC challenge metrics.")
parser.add_argument("GT_IMG", type=str, help="Ground Truth image")
parser.add_argument("PRED_IMG", type=str, help="Predicted image")
parser.add_argument("EVAL_DIR", type=str, help="path to output directory", default='.')
args = parser.parse_args()
main(args.GT_IMG, args.PRED_IMG, args.EVAL_DIR)