-
Notifications
You must be signed in to change notification settings - Fork 47
/
setup_cifar.py
127 lines (100 loc) · 3.74 KB
/
setup_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
## setup_cifar.py -- cifar data and model loading code
##
## Copyright (C) IBM Corp, 2017-2018
## Copyright (C) 2016, Nicholas Carlini <[email protected]>.
##
## This program is licenced under the BSD 2-Clause licence,
## contained in the LICENCE file in this directory.
import tensorflow as tf
import numpy as np
import os
import pickle
import gzip
import pickle
import urllib.request
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import np_utils
from keras.models import load_model
def load_batch(fpath, label_key='labels'):
f = open(fpath, 'rb')
d = pickle.load(f, encoding="bytes")
for k, v in d.items():
del(d[k])
d[k.decode("utf8")] = v
f.close()
data = d["data"]
labels = d[label_key]
data = data.reshape(data.shape[0], 3, 32, 32)
final = np.zeros((data.shape[0], 32, 32, 3),dtype=np.float32)
final[:,:,:,0] = data[:,0,:,:]
final[:,:,:,1] = data[:,1,:,:]
final[:,:,:,2] = data[:,2,:,:]
final /= 255
final -= .5
labels2 = np.zeros((len(labels), 10))
labels2[np.arange(len(labels2)), labels] = 1
return final, labels
def load_batch(fpath):
f = open(fpath,"rb").read()
size = 32*32*3+1
labels = []
images = []
for i in range(10000):
arr = np.fromstring(f[i*size:(i+1)*size],dtype=np.uint8)
lab = np.identity(10)[arr[0]]
img = arr[1:].reshape((3,32,32)).transpose((1,2,0))
labels.append(lab)
images.append((img/255)-.5)
return np.array(images),np.array(labels)
class CIFAR:
def __init__(self):
train_data = []
train_labels = []
if not os.path.exists("cifar-10-batches-bin"):
urllib.request.urlretrieve("https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz",
"cifar-data.tar.gz")
os.popen("tar -xzf cifar-data.tar.gz").read()
for i in range(5):
r,s = load_batch("cifar-10-batches-bin/data_batch_"+str(i+1)+".bin")
train_data.extend(r)
train_labels.extend(s)
train_data = np.array(train_data,dtype=np.float32)
train_labels = np.array(train_labels)
self.test_data, self.test_labels = load_batch("cifar-10-batches-bin/test_batch.bin")
VALIDATION_SIZE = 5000
self.validation_data = train_data[:VALIDATION_SIZE, :, :, :]
self.validation_labels = train_labels[:VALIDATION_SIZE]
self.train_data = train_data[VALIDATION_SIZE:, :, :, :]
self.train_labels = train_labels[VALIDATION_SIZE:]
class CIFARModel:
def __init__(self, restore=None, session=None, use_log=False):
self.num_channels = 3
self.image_size = 32
self.num_labels = 10
model = Sequential()
model.add(Conv2D(64, (3, 3),
input_shape=(32, 32, 3)))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, (3, 3)))
model.add(Activation('relu'))
model.add(Conv2D(128, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(256))
model.add(Activation('relu'))
model.add(Dense(256))
model.add(Activation('relu'))
model.add(Dense(10))
if use_log:
model.add(Activation('softmax'))
if restore:
model.load_weights(restore)
self.model = model
def predict(self, data):
return self.model(data)