-
Notifications
You must be signed in to change notification settings - Fork 0
/
2014-03-13-Advanced-Cluster.html
513 lines (370 loc) · 9.46 KB
/
2014-03-13-Advanced-Cluster.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
<!DOCTYPE html>
<html>
<head>
<title>Data Mining</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<style type="text/css">
@import url(http://fonts.googleapis.com/css?family=Droid+Serif);
@import url(http://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
body {
font-family: 'Droid Serif';
font-size: 25px;
}
.remark-slide-content {
padding: 1em 2em 1em 2em;
}
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: 400;
margin-top: 0;
margin-bottom: 0;
}
h1 { font-size: 3em; }
h2 { font-size: 1.8em; }
h3 { font-size: 1.4em; }
.footnote {
position: absolute;
bottom: 3em;
}
ul { margin: 8px;}
li p { line-height: 1.25em; }
.red { color: #fa0000; }
.large { font-size: 2em; }
a, a > code {
color: rgb(249, 38, 114);
text-decoration: none;
}
code {
-moz-border-radius: 3px;
-web-border-radius: 3px;
background: #e7e8e2;
color: black;
border-radius: 3px;
}
.tight-code {
font-size: 20px;
}
.white-background {
background-color: white;
padding: 10px;
display: block;
margin-left: auto;
margin-right: auto;
}
.limit-size img {
height: auto;
width: auto;
max-width: 1000px;
max-height: 500px;
}
em { color: #80cafa; }
.pull-left {
float: left;
width: 47%;
}
.pull-right {
float: right;
width: 47%;
}
.pull-right ~ p {
clear: both;
}
#slideshow .slide .content code {
font-size: 1.6em;
}
#slideshow .slide .content pre code {
font-size: 1.6em;
padding: 15px;
}
.inverse {
background: #272822;
color: #e3e3e3;
text-shadow: 0 0 20px #333;
}
.inverse h1, .inverse h2 {
color: #f3f3f3;
line-height: 1.6em;
}
/* Slide-specific styling */
#slide-inverse .footnote {
bottom: 12px;
left: 20px;
}
#slide-how .slides {
font-size: 1.6em;
position: absolute;
top: 151px;
right: 140px;
}
#slide-how .slides h3 {
margin-top: 0.2em;
}
#slide-how .slides .first, #slide-how .slides .second {
padding: 1px 20px;
height: 90px;
width: 120px;
-moz-box-shadow: 0 0 10px #777;
-webkit-box-shadow: 0 0 10px #777;
box-shadow: 0 0 10px #777;
}
#slide-how .slides .first {
background: #fff;
position: absolute;
top: 20%;
left: 20%;
z-index: 1;
}
#slide-how .slides .second {
position: relative;
background: #fff;
z-index: 0;
}
.center {
float: center;
}
/* Two-column layout */
.left-column {
width: 48%;
float: left;
}
.right-column {
width: 48%;
float: right;
}
.right-column img {
max-width: 120%;
max-height: 120%;
}
/* Tables */
table {
border-collapse: collapse;
margin: 0px;
}
table, th, td {
border: 1px solid white;
}
th, td {
padding: 7px;
}
</style>
</head>
<body>
<textarea id="source">
name: inverse
layout: true
class: left, top, inverse
---
# Advanced Clustering
---
## Review
+ Clustering groups points by using similarity
+ Build up, or break down groups
+ Each point belongs to 1 cluster
???
## Types
+ Agglomerative, Divisive
+ Assign each point to 1 centroid (k-means)
+ or group clusters together, starting with every point as a cluster
(hierarchical)
---
## Topics?
"This place is great. I've been here for meetings, to get work done, to hang out with friends, and on dates, and it's fit the bill every time. In the summer, there's a wonderful patio, and in the winter it's cozy and warm. All the food I've had is delicious -- especially the salad dressing!"
???
## Model by topic
+ ambiance
+ romantic
+ good for work
+ food quality
+ *Many*
+ So how do we model?
---
## Fuzzy Clusters
+ Membership is a degree in [0-1]
+ ```1 = sum(membership(v,c) for c in clusters)```
+ Every point belongs to at least 1 cluster
???
## Restrictions
+ Every point still must be in a cluster
+ Think of the degree as a probability
+ Probabilities must add up to 100% (1)
---
## Generative Model
???
## Questions
+ What is a "generative model"?
---
## Generative Model
+ "Real" model that produced original data points
???
## Questions
+ What is data mining trying to discover? What is machine learning hoping to
reproduce?
---
## Generative Model
+ "Real" model that produced original data points
+ Our mission is to reproduce the original model
???
## Questions
+ Why have different classifiers? Decision tree, Naive Bayes, etc?
---
## Generative Model
+ "Real" model that produced original data points
+ Our mission is to reproduce the original model
+ Thus we have different techniques that can model different behavior
---
## Homework: 1-D Clustering
???
## Questions
+ Draw number line
---
## Homework: 1-D Clustering
+ Imagine plotting the points on the number line
???
## Questions
+ Where did these numbers come from? We wanted two clusters.
---
## Homework: 1-D Clustering
+ Imagine plotting the points on the number line
+ Points were generated with a process:
+ Two Gaussian arrays, concatenated
???
## Questions
+ What parameters were used in the code to generate this specific set of N
numbers?
---
## Parameters
+ Median
+ Standard Deviation
+ How many points to generate from each
<img src="img/gaussian-simple.png" width=90% />
???
## Translation
+ Two distributions (median, stddev)
+ Picked one or the other with a certain probability
+ Then generated a number from it
+ In reality, just generated 10 from A, 10 from B, but you can imagine that
being 50% and 50%
---
## Generative Model
.white-background[
<img src="img/gaussian.png" width=100% />
]
???
## 3 Clusters
+ We have all three parameters:
+ median
+ stddev
+ probability of choosing distribution (height)
---
## Best Fit?
.left-column[
.white-background[
<img src="img/gaussian-badfit.png" width=100% />
]
]
.right-column[
.white-background[
<img src="img/gaussian-goodfit.png" width=100% />
]
]
???
## Choose
+ These letters are points on our number line
+ Which is more likely to be generated by our real model?
+ But we don't know the generative model, so how do we discover it?
---
## Revisit k-means
???
## Questions
+ What are the steps of k-means?
---
## Revisit k-means
+ Each object assigned to closest cluster
---
## Revisit k-means
+ Each object assigned to closest cluster
+ Reset center of the cluster to average
---
## Revisit k-means
+ Each object assigned to closest cluster
+ Reset center of the cluster to average
+ Repeat until steady
---
## Expectation-Maximization
+ Expectation
+ Given current state, create a solution that fits our expectations
+ Maximization
+ Adjust the state to maximize the likelihood of the solution
being true
+ Terminate
+ When adjustments do not change
???
## k-means translation
+ Our expectation in k-means is that points belong to the cluster closest to
them
+ Our state or parameters for our model are the locations of the centers of
those clusters
+ The maximization step therefore moves the centers to maximize the
likelihood of their being the true center
---
## Revisit k-means
+ Each object assigned to closest cluster
+ Reset center of the cluster to average
+ Repeat until steady
---
## Fuzzy Clustering
+ ~~Each object assigned to closest cluster~~
+ Each object assigned *probability* of cluster
+ ~~Reset center of the cluster to average~~
+ Reset center of the cluster to *weighted* average
+ Repeat until steady
???
## Change
+ Only difference here is that we're calculating the probability of a point
belonging to a cluster
+ What should we base that probability off of? distance
+ If point A has a high probability of belonging to cluster C, what can you
say about A and C? Close
---
## Distance
```dist(o,C) / sum(dist(o,c) for c in clusters))```
???
## Similarity
+ Our old friend distance
---
## Distance²
.tight-code[
```dist(o,C)**2 / sum(dist(o,c)**2 for c in clusters))```
]
+ Squared distance to primary cluster, divided by squared distance to all
clusters
???
## Similarity
+ Our old friend distance
+ And squared, to make sure we stay positive
---
## Reset Center
```sum(weight[c][p]**2 * p for p in points)```
+ Squared weight for this point in this cluster, multiplied by point
coordinates
???
## Weighting by distance
+ Distance of point affects how much a cluster center is pulled toward it
---
## Stability
+ When our centroids stabilize, we can estimate the parameters of our
distributions
+ Or use probabilities of points directly
???
## Uses
+ Sometimes you may not need original parameters
---
# *Break*
</textarea>
<script src="production/remark-0.5.9.min.js" type="text/javascript">
</script>
<script type="text/javascript">
var slideshow = remark.create();
</script>
</body>
</html>