forked from jcjohnson/torch-rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.lua
248 lines (217 loc) · 7.63 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
require 'torch'
require 'nn'
require 'optim'
require 'LanguageModel'
require 'util.DataLoader'
local utils = require 'util.utils'
local unpack = unpack or table.unpack
local cmd = torch.CmdLine()
-- Dataset options
cmd:option('-input_h5', 'data/tiny-shakespeare.h5')
cmd:option('-input_json', 'data/tiny-shakespeare.json')
cmd:option('-batch_size', 50)
cmd:option('-seq_length', 50)
-- Model options
cmd:option('-init_from', '')
cmd:option('-reset_iterations', 1)
cmd:option('-model_type', 'lstm')
cmd:option('-wordvec_size', 64)
cmd:option('-rnn_size', 128)
cmd:option('-num_layers', 2)
cmd:option('-dropout', 0)
cmd:option('-batchnorm', 0)
-- Optimization options
cmd:option('-max_epochs', 50)
cmd:option('-learning_rate', 2e-3)
cmd:option('-grad_clip', 5)
cmd:option('-lr_decay_every', 5)
cmd:option('-lr_decay_factor', 0.5)
-- Output options
cmd:option('-print_every', 1)
cmd:option('-checkpoint_every', 1000)
cmd:option('-checkpoint_name', 'cv/checkpoint')
-- Benchmark options
cmd:option('-speed_benchmark', 0)
cmd:option('-memory_benchmark', 0)
-- Backend options
cmd:option('-gpu', 0)
cmd:option('-gpu_backend', 'cuda')
local opt = cmd:parse(arg)
-- Set up GPU stuff
local dtype = 'torch.FloatTensor'
if opt.gpu >= 0 and opt.gpu_backend == 'cuda' then
require 'cutorch'
require 'cunn'
cutorch.setDevice(opt.gpu + 1)
dtype = 'torch.CudaTensor'
print(string.format('Running with CUDA on GPU %d', opt.gpu))
elseif opt.gpu >= 0 and opt.gpu_backend == 'opencl' then
-- Memory benchmarking is only supported in CUDA mode
-- TODO: Time benchmarking is probably wrong in OpenCL mode.
require 'cltorch'
require 'clnn'
cltorch.setDevice(opt.gpu + 1)
dtype = torch.Tensor():cl():type()
print(string.format('Running with OpenCL on GPU %d', opt.gpu))
else
-- Memory benchmarking is only supported in CUDA mode
opt.memory_benchmark = 0
print 'Running in CPU mode'
end
-- Initialize the DataLoader and vocabulary
local loader = DataLoader(opt)
local vocab = utils.read_json(opt.input_json)
local idx_to_token = {}
for k, v in pairs(vocab.idx_to_token) do
idx_to_token[tonumber(k)] = v
end
-- Initialize the model and criterion
local opt_clone = torch.deserialize(torch.serialize(opt))
opt_clone.idx_to_token = idx_to_token
local model = nil
local start_i = 0
if opt.init_from ~= '' then
print('Initializing from ', opt.init_from)
local checkpoint = torch.load(opt.init_from)
model = checkpoint.model:type(dtype)
if opt.reset_iterations == 0 then
start_i = checkpoint.i
end
else
model = nn.LanguageModel(opt_clone):type(dtype)
end
local params, grad_params = model:getParameters()
local crit = nn.CrossEntropyCriterion():type(dtype)
-- Set up some variables we will use below
local N, T = opt.batch_size, opt.seq_length
local train_loss_history = {}
local val_loss_history = {}
local val_loss_history_it = {}
local forward_backward_times = {}
local init_memory_usage, memory_usage = nil, {}
if opt.memory_benchmark == 1 then
-- This should only be enabled in GPU mode
assert(cutorch)
cutorch.synchronize()
local free, total = cutorch.getMemoryUsage(cutorch.getDevice())
init_memory_usage = total - free
end
-- Loss function that we pass to an optim method
local function f(w)
assert(w == params)
grad_params:zero()
-- Get a minibatch and run the model forward, maybe timing it
local timer
local x, y = loader:nextBatch('train')
x, y = x:type(dtype), y:type(dtype)
if opt.speed_benchmark == 1 then
if cutorch then cutorch.synchronize() end
timer = torch.Timer()
end
local scores = model:forward(x)
-- Use the Criterion to compute loss; we need to reshape the scores to be
-- two-dimensional before doing so. Annoying.
local scores_view = scores:view(N * T, -1)
local y_view = y:view(N * T)
local loss = crit:forward(scores_view, y_view)
-- Run the Criterion and model backward to compute gradients, maybe timing it
local grad_scores = crit:backward(scores_view, y_view):view(N, T, -1)
model:backward(x, grad_scores)
if timer then
if cutorch then cutorch.synchronize() end
local time = timer:time().real
print('Forward / Backward pass took ', time)
table.insert(forward_backward_times, time)
end
-- Maybe record memory usage
if opt.memory_benchmark == 1 then
assert(cutorch)
if cutorch then cutorch.synchronize() end
local free, total = cutorch.getMemoryUsage(cutorch.getDevice())
local memory_used = total - free - init_memory_usage
local memory_used_mb = memory_used / 1024 / 1024
print(string.format('Using %dMB of memory', memory_used_mb))
table.insert(memory_usage, memory_used)
end
if opt.grad_clip > 0 then
grad_params:clamp(-opt.grad_clip, opt.grad_clip)
end
return loss, grad_params
end
-- Train the model!
local optim_config = {learningRate = opt.learning_rate}
local num_train = loader.split_sizes['train']
local num_iterations = opt.max_epochs * num_train
model:training()
for i = start_i + 1, num_iterations do
local epoch = math.floor(i / num_train) + 1
-- Check if we are at the end of an epoch
if i % num_train == 0 then
model:resetStates() -- Reset hidden states
-- Maybe decay learning rate
if epoch % opt.lr_decay_every == 0 then
local old_lr = optim_config.learningRate
optim_config = {learningRate = old_lr * opt.lr_decay_factor}
end
end
-- Take a gradient step and maybe print
-- Note that adam returns a singleton array of losses
local _, loss = optim.adam(f, params, optim_config)
table.insert(train_loss_history, loss[1])
if opt.print_every > 0 and i % opt.print_every == 0 then
local float_epoch = i / num_train + 1
local msg = 'Epoch %.2f / %d, i = %d / %d, loss = %f'
local args = {msg, float_epoch, opt.max_epochs, i, num_iterations, loss[1]}
print(string.format(unpack(args)))
end
-- Maybe save a checkpoint
local check_every = opt.checkpoint_every
if (check_every > 0 and i % check_every == 0) or i == num_iterations then
-- Evaluate loss on the validation set. Note that we reset the state of
-- the model; this might happen in the middle of an epoch, but that
-- shouldn't cause too much trouble.
model:evaluate()
model:resetStates()
local num_val = loader.split_sizes['val']
local val_loss = 0
for j = 1, num_val do
local xv, yv = loader:nextBatch('val')
local N_v = xv:size(1)
xv = xv:type(dtype)
yv = yv:type(dtype):view(N_v * T)
local scores = model:forward(xv):view(N_v * T, -1)
val_loss = val_loss + crit:forward(scores, yv)
end
val_loss = val_loss / num_val
print('val_loss = ', val_loss)
table.insert(val_loss_history, val_loss)
table.insert(val_loss_history_it, i)
model:resetStates()
model:training()
-- First save a JSON checkpoint, excluding the model
local checkpoint = {
opt = opt,
train_loss_history = train_loss_history,
val_loss_history = val_loss_history,
val_loss_history_it = val_loss_history_it,
forward_backward_times = forward_backward_times,
memory_usage = memory_usage,
i = i
}
local filename = string.format('%s_%d.json', opt.checkpoint_name, i)
-- Make sure the output directory exists before we try to write it
paths.mkdir(paths.dirname(filename))
utils.write_json(filename, checkpoint)
-- Now save a torch checkpoint with the model
-- Cast the model to float before saving so it can be used on CPU
model:clearState()
model:float()
checkpoint.model = model
local filename = string.format('%s_%d.t7', opt.checkpoint_name, i)
paths.mkdir(paths.dirname(filename))
torch.save(filename, checkpoint)
model:type(dtype)
params, grad_params = model:getParameters()
collectgarbage()
end
end