-
Notifications
You must be signed in to change notification settings - Fork 19
/
constants.hpp
1198 lines (1056 loc) · 36 KB
/
constants.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* PEIGEN: a Platform for Evaluation, Implementation, and Generation of S-boxes
*
* Copyright 2019 by
* Zhenzhen Bao <baozhenzhen10[at]gmail.com>
* Jian Guo <guojian[at]ntu.edu.sg>
* San Ling <lingsan[at]ntu.edu.sg>
* Yu Sasaki <yu[dot]sasaki[dot][email protected]>
*
* This platform is developed based on the open source application
* <http://jeremy.jean.free.fr/pub/fse2018_layer_implementations.tar.gz>
* Optimizing Implementations of Lightweight Building Blocks
*
* Copyright 2017 by
* Jade Tourteaux <Jade[dot]Tourteaux[at]gmail.com>
* Jérémy Jean <Jean[dot]Jeremy[at]gmail.com>
*
* We follow the same copyright policy.
*
* This file is part of some open source application.
*
* Some open source application is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation, either
* version 3 of the License, or (at your option) any later version.
*
* Some open source application is distributed in the hope that it will
* be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Foobar. If not, see <http://www.gnu.org/licenses/>.
*
* @license GPL-3.0+ <http://spdx.org/licenses/GPL-3.0+>
*/
#ifndef CONSTANTS_H__
#define CONSTANTS_H__
#include <cstdint>
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <vector>
#include <array>
#include <inttypes.h>
#include <string>
#include <fstream>
#include <map>
#include <stdexcept>
#include <set>
#include <tuple>
#include <stack>
#include <cmath>
#include "omp.h"
#include <limits>
#include <sstream>
#include <time.h>
#include <unistd.h>
#include <getopt.h>
#include <stdio.h>
#include <string.h>
#include <bitset>
#include <immintrin.h>
#include <tmmintrin.h>
#include <utility>
#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#include "static_sort.h"
#pragma GCC diagnostic pop
#include "HadamardMatrix.hpp"
using namespace std;
namespace Peigen
{
namespace depth
{
template<int N> class faster;
template<int N> struct bool_function_t;
template<int N> struct function_t;
struct bool_op_t;
}
template<int N> struct function_t;
template<int N> struct evaluator;
namespace weight
{
template<int N> class lighter;
struct bool_op_t;
}
}
#define NDEBUG
#ifdef NDEBUG
#define PRINT(x) ((void)0)
#else
#define PRINT(x) x
#endif
//#define NCHECKR
#ifdef NCHECKR
#define CHECKR(x) ((void)0)
#else
#define CHECKR(x) x
#endif
//#define NCHECKAB
#ifdef NCHECKAB
#define CHECK(x) ((void)0)
#else
#define CHECK(x) x
#endif
#define ALIGNED_(x) __attribute__((aligned(x)))
#define ALIGNED_TYPE_(t,x) t ALIGNED_(x)
template<int N>
using UINT_ =
typename std::conditional<N <= 3, std::uint8_t,
typename std::conditional<N == 4, std::uint16_t,
typename std::conditional<N == 5, std::uint32_t,
typename std::conditional<N == 6, std::uint64_t, std::uint64_t
>::type
>::type
>::type
>::type;
#define UINT_MAX (numeric_limits<UINT_<N> >::max())
#define FACT_(n) \
(n == 0 ? 1 : \
(n == 1 ? 1 : \
(n == 2 ? 2 : \
(n == 3 ? 6 : \
(n == 4 ? 24 : \
(n == 5 ? 120 : \
(n == 6 ? 720 : \
(n == 7 ? 5040 : \
(n == 8 ? 40320 : \
(n == 9 ? 362880 : \
(n == 10 ? 3628800 : \
(n == 11 ? 39916800 : \
(n == 12 ? 479001600 : \
(numeric_limits<int>::max()) \
) \
) \
) \
) \
) \
) \
) \
) \
) \
) \
) \
) \
)
#define C(n, k) (FACT_(n) /(FACT_(k) * FACT_(n - (k))))
#define digits(x) \
{ \
((x) < 10 ? 1 : \
((x) < 100 ? 2 : \
((x) < 1000 ? 3 : \
((x) < 10000 ? 4 : \
((x) < 100000 ? 5 : \
((x) < 1000000 ? 6 : \
((x) < 10000000 ? 7 : \
((x) < 100000000 ? 8 : \
((x) < 1000000000 ? 9 : \
10))))))))) \
}
#define UNIT_BIT_N (8*sizeof(UINT_<N>))
#define UNIT_NIBBLE_N (2*sizeof(UINT_<N>))
#define BIT_SLICE_BITS_N (1 << N)
#define BIT_SLICE_NIBBLES_N ((1 << N) >> 2 )
#define BIT_SLICE_BYTES_N ((1 << N) >> 3 )
#define BIT_SLICE_ULLS_N ((1 << N) >> 6 )
#define UNIT_N (BIT_SLICE_BYTES_N/sizeof(UINT_<N>))
#define LUT_UNIT_N (1 << N)
#define LUT_UNIT_NIBBLE_N ((N+3)/4)
#define LUT_NIBBLE_N (LUT_UNIT_NIBBLE_N * LUT_UNIT_N)
#define LUT_UNIT_BYTE_N ((N+7)/8)
#define LUT_BYTE_N (LUT_UNIT_BYTE_N * LUT_UNIT_N)
#define LUT_ULL_N ((LUT_BYTE_N + 7) / 8)
#define LUT_XMM_N ((LUT_UNIT_N + 15) / 16)
template<int N>
using bit_slice_l_t = std::array<UINT_<N>, UNIT_N>;
template<int N>
using bit_slice_t = std::array<bit_slice_l_t<N>, N>;
template<int N>
using bit_slice_l_PE_t = std::pair<bit_slice_l_t<N>, int>;
template<int N>
using bit_slice_PE_t = std::array<bit_slice_l_PE_t<N>, N>;
template<int N>
inline bool operator < (const bit_slice_l_PE_t<N> & lhs, const bit_slice_l_PE_t<N> & rhs)
{
return (lhs.first < rhs.first);
}
template<int N>
inline bool operator == (const bit_slice_l_PE_t<N> & lhs, const bit_slice_l_PE_t<N> & rhs)
{
return (lhs.first == rhs.first);
}
template<typename T>
inline T operator ^ (const T& lhs, const T& rhs)
{
T tmp;
for(int i = 0; i < lhs.size(); i++)
{
tmp[i] = lhs[i] ^ rhs[i];
}
return tmp;
}
template<typename T>
inline T operator | (const T& lhs, const T& rhs)
{
T tmp;
for(int i = 0; i < lhs.size(); i++)
{
tmp[i] = lhs[i] | rhs[i];
}
return tmp;
}
template<typename T>
inline T operator & (const T& lhs, const T& rhs)
{
T tmp;
for(int i = 0; i < lhs.size(); i++)
{
tmp[i] = lhs[i] & rhs[i];
}
return tmp;
}
template<typename T>
inline T operator ~ (const T& rhs)
{
T tmp;
for(int i = 0; i < rhs.size(); i++)
{
tmp[i] = ~rhs[i];
}
return tmp;
}
const __m128i zero_128 = _mm_setzero_si128();
const __m256i zero_256 = _mm256_setzero_si256();
const __m128i one_128 = _mm_set_epi64x(0xffffffffffffffffULL, 0xffffffffffffffffULL);
const __m128i S4_I = _mm_set_epi8(0xf, 0xe, 0xd, 0xc, 0xb, 0xa, 0x9, 0x8, 0x7, 0x6, 0x5, 0x4, 0x3, 0x2, 0x1, 0x0);
const __m128i x = _mm_set_epi8(0xf, 0xe, 0xd, 0xc, 0xb, 0xa, 0x9, 0x8, 0x7, 0x6, 0x5, 0x4, 0x3, 0x2, 0x1, 0x0);
const __m128i x0 = _mm_set_epi8(0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0);
const __m128i x1 = _mm_set_epi8(0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1);
const __m128i x2 = _mm_set_epi8(0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2);
const __m128i x3 = _mm_set_epi8(0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3);
const __m128i x4 = _mm_set_epi8(0x4, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4);
const __m128i x5 = _mm_set_epi8(0x5, 0x5, 0x5, 0x5, 0x5, 0x5, 0x5, 0x5, 0x5, 0x5, 0x5, 0x5, 0x5, 0x5, 0x5, 0x5);
const __m128i x6 = _mm_set_epi8(0x6, 0x6, 0x6, 0x6, 0x6, 0x6, 0x6, 0x6, 0x6, 0x6, 0x6, 0x6, 0x6, 0x6, 0x6, 0x6);
const __m128i x7 = _mm_set_epi8(0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7);
const __m128i x8 = _mm_set_epi8(0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8);
const __m128i x9 = _mm_set_epi8(0x9, 0x9, 0x9, 0x9, 0x9, 0x9, 0x9, 0x9, 0x9, 0x9, 0x9, 0x9, 0x9, 0x9, 0x9, 0x9);
const __m128i xa = _mm_set_epi8(0xa, 0xa, 0xa, 0xa, 0xa, 0xa, 0xa, 0xa, 0xa, 0xa, 0xa, 0xa, 0xa, 0xa, 0xa, 0xa);
const __m128i xb = _mm_set_epi8(0xb, 0xb, 0xb, 0xb, 0xb, 0xb, 0xb, 0xb, 0xb, 0xb, 0xb, 0xb, 0xb, 0xb, 0xb, 0xb);
const __m128i xc = _mm_set_epi8(0xc, 0xc, 0xc, 0xc, 0xc, 0xc, 0xc, 0xc, 0xc, 0xc, 0xc, 0xc, 0xc, 0xc, 0xc, 0xc);
const __m128i xd = _mm_set_epi8(0xd, 0xd, 0xd, 0xd, 0xd, 0xd, 0xd, 0xd, 0xd, 0xd, 0xd, 0xd, 0xd, 0xd, 0xd, 0xd);
const __m128i xe = _mm_set_epi8(0xe, 0xe, 0xe, 0xe, 0xe, 0xe, 0xe, 0xe, 0xe, 0xe, 0xe, 0xe, 0xe, 0xe, 0xe, 0xe);
const __m128i xf = _mm_set_epi8(0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf);
const __m128i S3_valv_mask8 = _mm_set_epi64x(0x0ULL, 0xffffffULL);
const __m128i S3_valv_mask4 = _mm_set_epi64x(0x0ULL, 0xf0f0f0ULL);
const __m128i S3_valv_mask2 = _mm_set_epi64x(0x0ULL, 0xccccccULL);
const __m128i S3_valv_mask1 = _mm_set_epi64x(0x0ULL, 0xaaaaaaULL);
const __m128i S3_comps_ind_mask = _mm_set_epi64x(0x0ULL, 0x8080808080808080ULL);
const __m128i S3_comps_deg_mask3 = _mm_set_epi64x(0x0ULL, 0x8080808080808080ULL); // 1000 0000
const __m128i S3_comps_deg_mask2 = _mm_set_epi64x(0x0ULL, 0x6868686868686868ULL); // 0110 1000
const __m128i S3_comps_deg_mask1 = _mm_set_epi64x(0x0ULL, 0x1616161616161616ULL); // 0001 0110
const __m128i S3_coors_ind_mask = _mm_set_epi64x(0x0ULL, 0x808080ULL);
const __m128i S3_coors_deg_mask3 = _mm_set_epi64x(0x0ULL, 0x808080ULL); // 1000 0000
const __m128i S3_coors_deg_mask2 = _mm_set_epi64x(0x0ULL, 0x686868ULL); // 0110 1000
const __m128i S3_coors_deg_mask1 = _mm_set_epi64x(0x0ULL, 0x161616ULL); // 0001 0110
const __m128i S4_valv_maskg = _mm_set_epi64x(0x0ULL, 0xffffffffffffffffULL);
const __m128i S4_valv_mask8 = _mm_set_epi64x(0x0ULL, 0xff00ff00ff00ff00ULL);
const __m128i S4_valv_mask4 = _mm_set_epi64x(0x0ULL, 0xf0f0f0f0f0f0f0f0ULL);
const __m128i S4_valv_mask2 = _mm_set_epi64x(0x0ULL, 0xccccccccccccccccULL);
const __m128i S4_valv_mask1 = _mm_set_epi64x(0x0ULL, 0xaaaaaaaaaaaaaaaaULL);
const __m256i S4_comps_ind_mask = _mm256_set_epi64x(0x8000800080008000ULL, 0x8000800080008000ULL, 0x8000800080008000ULL, 0x8000800080008000ULL); // fedc ba98 7654 3210
const __m256i S4_comps_deg_mask4 = _mm256_set_epi64x(0x8000800080008000ULL, 0x8000800080008000ULL, 0x8000800080008000ULL, 0x8000800080008000ULL); // 1000 0000 0000 0000
const __m256i S4_comps_deg_mask3 = _mm256_set_epi64x(0x6880688068806880ULL, 0x6880688068806880ULL, 0x6880688068806880ULL, 0x6880688068806880ULL); // 0110 1000 1000 0000
const __m256i S4_comps_deg_mask2 = _mm256_set_epi64x(0x1668166816681668ULL, 0x1668166816681668ULL, 0x1668166816681668ULL, 0x1668166816681668ULL); // 0001 0110 0110 1000
const __m256i S4_comps_deg_mask1 = _mm256_set_epi64x(0x0116011601160116ULL, 0x0116011601160116ULL, 0x0116011601160116ULL, 0x0116011601160116ULL); // 0000 0001 0001 0110
const __m128i S4_coors_ind_mask = _mm_set_epi64x(0x0ULL, 0x8000800080008000ULL); // fedc ba98 7654 3210
const __m128i S4_coors_deg_mask4 = _mm_set_epi64x(0x0ULL, 0x8000800080008000ULL); // 1000 0000 0000 0000
const __m128i S4_coors_deg_mask3 = _mm_set_epi64x(0x0ULL, 0x6880688068806880ULL); // 0110 1000 1000 0000
const __m128i S4_coors_deg_mask2 = _mm_set_epi64x(0x0ULL, 0x1668166816681668ULL); // 0001 0110 0110 1000
const __m128i S4_coors_deg_mask1 = _mm_set_epi64x(0x0ULL, 0x0116011601160116ULL); // 0000 0001 0001 0110
template<int N>
const array<int, N+1> HWorder_off = []
{
array<int, N+1> aHWorder_off;
aHWorder_off[0] = 0;
for (int i = 1; i <= N; i++)
{
aHWorder_off[i] = aHWorder_off[i - 1] + C(N, i-1);
}
return aHWorder_off;
}();
template<int N>
const array<int, 1<<N> HWorder = []
{
array<int, 1<<N> aHWorder;
int offset[N + 1] = { 0 };
offset[0] = 0;
for (int i = 1; i <= N; i++)
{
offset[i] = offset[i - 1] + C(N, i-1);
}
for (int i = 0; i < (1<<N); i++)
{
int hw = _mm_popcnt_u32(i);
aHWorder[offset[hw]] = i;
offset[hw]++;
}
return aHWorder;
}();
template<int N>
struct OPs_t
{
bit_slice_l_t<N> sll (const bit_slice_l_t<N> & lhs, const int offsite) const
{
bit_slice_l_t<N> res = {{}};
UINT_<N> inter_offsite = (UINT_<N>)offsite / (UINT_<N>)UNIT_BIT_N;
UINT_<N> * src_inter_right = (UINT_<N> *)lhs.data();
UINT_<N> * dst_inter_right = (UINT_<N> *)res.data();
UINT_<N> * dst_inter_left = dst_inter_right + inter_offsite;
memcpy(dst_inter_left, src_inter_right, (UNIT_N - inter_offsite)*sizeof(UINT_<N>));
UINT_<N> intra_offsite = (UINT_<N>)offsite % (UINT_<N>)UNIT_BIT_N;
if (intra_offsite != 0)
{
bit_slice_l_t<N> left = {{}};
bit_slice_l_t<N> right = {{}};
UINT_<N> * src_intra = (UINT_<N> *)res.data();
UINT_<N> * dst_intra_right = (UINT_<N> *)right.data();
UINT_<N> * dst_intra_left = (UINT_<N> *)left.data();
for (int i = 0; i < UNIT_N - 1; i++)
{
dst_intra_right[i+1] = src_intra[i] >> ((UINT_<N>)UNIT_BIT_N - intra_offsite);
}
dst_intra_right[0] = 0;
for (int i = 0; i < UNIT_N; i++)
{
dst_intra_left[i] = src_intra[i] << intra_offsite;
src_intra[i] = dst_intra_left[i] | dst_intra_right[i];
}
}
return res;
}
bit_slice_l_t<N> srl (const bit_slice_l_t<N> & lhs, const int offsite) const
{
bit_slice_l_t<N> res = {{}};
UINT_<N> inter_offsite = (UINT_<N>)offsite / (UINT_<N>)UNIT_BIT_N;
UINT_<N> * src_inter_right = (UINT_<N> *)lhs.data();
UINT_<N> * src_inter_left = src_inter_right + inter_offsite;
UINT_<N> * dst_inter_right = (UINT_<N> *)res.data();
memcpy(dst_inter_right, src_inter_left, (UNIT_N - inter_offsite)*sizeof(UINT_<N>));
UINT_<N> intra_offsite = (UINT_<N>)offsite % (UINT_<N>)UNIT_BIT_N;
if (intra_offsite != 0)
{
bit_slice_l_t<N> left = {{}};
bit_slice_l_t<N> right = {{}};
UINT_<N> * src_intra = (UINT_<N> *)res.data();
UINT_<N> * dst_intra_right = (UINT_<N> *)right.data();
UINT_<N> * dst_intra_left = (UINT_<N> *)left.data();
for (int i = 0; i < UNIT_N - 1; i++)
{
dst_intra_left[i] = src_intra[i+1] << ((UINT_<N>)UNIT_BIT_N - intra_offsite);
}
dst_intra_left[UNIT_N - 1] = 0;
for (int i = 0; i < UNIT_N; i++)
{
dst_intra_right[i] = src_intra[i] >> intra_offsite;
src_intra[i] = dst_intra_left[i] | dst_intra_right[i];
}
}
return res;
}
bit_slice_l_t<N> rotl (const bit_slice_l_t<N> & lhs, const int offsite) const
{
bit_slice_l_t<N> res = {{}};
UINT_<N> inter_offsite = (UINT_<N>) offsite / (UINT_<N>) UNIT_BIT_N;
UINT_<N> * src_inter_right = (UINT_<N> *)lhs.data();
UINT_<N> * src_inter_left = src_inter_right + ((UINT_<N>)UNIT_N - inter_offsite);
UINT_<N> * dst_inter_right = (UINT_<N> *)res.data();
UINT_<N> * dst_inter_left = dst_inter_right + inter_offsite;
if (inter_offsite != 0)
{
memcpy(dst_inter_right, src_inter_left, inter_offsite * sizeof(UINT_<N>));
memcpy(dst_inter_left, src_inter_right, ((UINT_<N>) UNIT_N - inter_offsite)*sizeof(UINT_<N>));
}
else
{
memcpy(dst_inter_left, src_inter_right, (UINT_<N>)UNIT_N * sizeof(UINT_<N>));
}
UINT_<N> intra_offsite = offsite % UNIT_BIT_N;
if (intra_offsite != 0)
{
bit_slice_l_t<N> left = {{}};
bit_slice_l_t<N> right = {{}};
UINT_<N> * src_intra = (UINT_<N> *)res.data();
UINT_<N> * dst_intra_right = (UINT_<N> *)right.data();
UINT_<N> * dst_intra_left = (UINT_<N> *)left.data();
for (int i = 0; i < UNIT_N; i++)
{
dst_intra_right[(i+1) % UNIT_N] = src_intra[i] >> ((UINT_<N>) UNIT_BIT_N - intra_offsite);
}
for (int i = 0; i < UNIT_N; i++)
{
dst_intra_left[i] = src_intra[i] << intra_offsite;
src_intra[i] = dst_intra_left[i] | dst_intra_right[i];
}
}
return res;
}
int get_bit(const bit_slice_l_t<N> & lhs, const int offsite) const
{
int bit;
UINT_<N> * src = (UINT_<N> *)lhs.data();
bit = (src[(UINT_<N>) offsite / (UINT_<N>) UNIT_BIT_N] >> ((UINT_<N>) offsite % (UINT_<N>) UNIT_BIT_N)) & 1;
return bit;
}
bit_slice_l_t<N> set_bit(const bit_slice_l_t<N> & lhs, const int offsite) const
{
bit_slice_l_t<N> res = lhs;
UINT_<N> inter_offsite = (UINT_<N>)offsite / (UINT_<N>)UNIT_BIT_N;
UINT_<N> intra_offsite = (UINT_<N>)offsite % (UINT_<N>)UNIT_BIT_N;
res[inter_offsite] |= ((UINT_<N>)1 << intra_offsite);
return res;
}
void set_bit_inplace(bit_slice_l_t<N> & lhs, const int offsite) const
{
UINT_<N> inter_offsite = (UINT_<N>)offsite / (UINT_<N>)UNIT_BIT_N;
UINT_<N> intra_offsite = (UINT_<N>)offsite % (UINT_<N>)UNIT_BIT_N;
lhs[inter_offsite] |= ((UINT_<N>)1 << intra_offsite);
}
bit_slice_l_t<N> unset_bit(const bit_slice_l_t<N> & lhs, const int offsite) const
{
bit_slice_l_t<N> res = lhs;
UINT_<N> inter_offsite = (UINT_<N>)offsite / (UINT_<N>)UNIT_BIT_N;
UINT_<N> intra_offsite = (UINT_<N>)offsite % (UINT_<N>)UNIT_BIT_N;
res[inter_offsite] &= ~((UINT_<N>)1 << intra_offsite);
return res;
}
void unset_bit_inplace(bit_slice_l_t<N> & lhs, const int offsite) const
{
UINT_<N> inter_offsite = (UINT_<N>)offsite / (UINT_<N>)UNIT_BIT_N;
UINT_<N> intra_offsite = (UINT_<N>)offsite % (UINT_<N>)UNIT_BIT_N;
lhs[inter_offsite] &= ~((UINT_<N>)1 << intra_offsite);
}
bit_slice_l_t<N> set_zero() const
{
bit_slice_l_t<N> res = { {0} };
return res;
}
void set_zero_inplace(bit_slice_l_t<N> & lhs) const
{
lhs = lhs ^ lhs;
}
bit_slice_l_t<N> set_one() const
{
bit_slice_l_t<N> res = { {0} };
UINT_<N> inter_offsite = (UINT_<N>)BIT_SLICE_BITS_N / (UINT_<N>)UNIT_BIT_N;
for (int i = 0; i < inter_offsite; i++)
{
res[i] = numeric_limits<UINT_<N> >::max();
}
return res;
}
void set_one_inplace(bit_slice_l_t<N> & lhs) const
{
UINT_<N> inter_offsite = (UINT_<N>)BIT_SLICE_BITS_N / (UINT_<N>)UNIT_BIT_N;
for (int i = 0; i < inter_offsite; i++)
{
lhs[i] = numeric_limits<UINT_<N> >::max();
}
}
int lsb_idx(bit_slice_l_t<N> & lhs) const
{
if (lhs == set_zero()) return -1;
int base = 0;
for (int i = 0; i < UNIT_N; i++)
{
if (lhs[i] != 0) return base + __builtin_ffsll(lhs[i]) - 1;
base += UNIT_BIT_N;
}
cout << "Should not run into here:" << __LINE__ << endl;
return -1;
}
int unset_lsb_idx_inplace(bit_slice_l_t<N> & lhs) const
{
if (lhs == set_zero()) return -1;
int base = 0;
for (int i = 0; i < UNIT_N; i++)
{
if (lhs[i] != 0)
{
int offsite = __builtin_ffsll(lhs[i]) - 1;
lhs[i] &= ~((UINT_<N>)1 << (UINT_<N>)offsite);
return base + offsite;
}
base += UNIT_BIT_N;
}
cout << "Should not run into here:" << __LINE__ << endl;
return -1;
}
int next_lsb_idx(const bit_slice_l_t<N> & lhs, int idx) const
{
if (idx == (LUT_UNIT_N-1)) return -1;
idx = idx + 1;
bit_slice_l_t<N> tmp = lhs;
UINT_<N> inter_offsite = (UINT_<N>)idx / (UINT_<N>)UNIT_BIT_N;
UINT_<N> intra_offsite = (UINT_<N>)idx % (UINT_<N>)UNIT_BIT_N;
for (int i = 0; i < inter_offsite; i++)
{
tmp[i] = 0;
}
if (intra_offsite != 0)
{
tmp[inter_offsite] = tmp[inter_offsite] & (~(((UINT_<N>)1 << intra_offsite) - (UINT_<N>)1));
}
return lsb_idx(tmp);
}
int cnt_1(const bit_slice_l_t<N> & lhs) const
{
int sum = 0;
if (UNIT_BIT_N <= 64)
{
sum = _mm_popcnt_u64((uint64_t)lhs[0]);
return sum;
}
for (int i = 0; i < UNIT_N; i++)
{
sum += _mm_popcnt_u64((uint64_t)lhs[i]);
}
return sum;
}
int rank(set<uint8_t, std::greater<uint8_t> > X)
{
set<uint8_t, std::greater<uint8_t> > X1 = X;
set<uint8_t, std::greater<uint8_t> > X2;
while (X1.size() != 0)
{
int maxx = *(X1.begin());
X1.erase(maxx);
X2.insert(maxx);
if (X1.size() == 0) break;
int b1 = __builtin_clz(maxx);
set<uint8_t, std::greater<uint8_t> > X1t;
for (auto xr : X1)
{
int b2 = __builtin_clz(xr);
uint8_t xn = (b1 == b2) ? (xr ^ maxx) : xr;
X1t.insert(xn);
}
X1 = X1t;
X1t.clear();
}
// cout << "X2 = {" << hex;
// for (auto nx : X2) cout << nx + '\0' << "," << endl;
// cout << "}" << dec << endl;
return X2.size();
}
void gen_subspaces(vector<vector<vector<uint8_t> > > & subspaces)
{
#define N0 N
#define Ci(x) (C0[x+1]-1)
int A0[N0 + 1], T0[N0 + 1], F0[N0 + 1], H0[N0 + 1], C0[N0 + 1], X0, Y0, I0, L0, Z0;
int M0;
array<array<int, N>, N> m;
vector<pair<int, int> > free_positions;
vector<vector<uint8_t> > newdim_subspaces;
vector<uint8_t> anew_subspace;
for (int dim = 1; dim < N; dim++)
{
newdim_subspaces.clear();
M0 = dim;
for (int i=0; i<=(N0-M0); i++) A0[i] = 0; for (int i=N0-M0+1; i<=N0; i++) A0[i] = 1;
for (int i = 1; i<=M0; i++) { C0[i] = N0 - M0 + i; H0[N0-M0+i] = i; }
T0[N0-M0] = -1; T0[1] = 0; F0[N0] = N0 - M0 + 1; I0 = N0 - M0; L0 = N0;
do {
for (int i = 0; i < dim; i++) m[i].fill(0);
free_positions.clear();
for (int i = 0; i < dim; i++)
{
m[i][Ci(i)] = 1;
for (int j = Ci(i) + 1; j < N; j++)
{
if (A0[j+1] != 1)
{
free_positions.push_back(pair<int, int>(i, j));
}
}
}
int num_free_pos = free_positions.size();
for (uint64_t v = 0; v < (1<<num_free_pos); v++)
{
for (int fi = 0; fi < num_free_pos; fi++)
{
auto freepos = free_positions[fi];
int rowi = freepos.first;
int coli = freepos.second;
m[rowi][coli] = (int)((v >> (uint64_t)fi) & 1ULL);
}
anew_subspace.clear();
for (int ri = 0; ri < dim; ri++)
{
uint8_t vec = 0;
for (int ci = 0; ci < N; ci++) vec |= (m[ri][ci] << ci);
anew_subspace.push_back(vec);
}
anew_subspace.shrink_to_fit();
newdim_subspaces.push_back(anew_subspace);
}
if (I0 == 0)
{
break;
}
else
{
if (T0[I0] < 0) { if ((-T0[I0]) != (I0-1)){ T0[I0-1] = T0[I0]; } T0[I0] = I0-1; }
if ( A0[I0]==0 )
{
X0 = I0; Y0 = F0[L0]; if (A0[I0-1] == 1){ F0[I0] = F0[I0 - 1]; } else { F0[I0] = I0; }
if (F0[L0] == L0) { L0 = I0; I0 = T0[I0]; goto CHANGE; }
if (L0 == N0) { T0[F0[N0]] = -I0 - 1; T0[I0 + 1] = T0[I0]; I0 = F0[N0]; F0[N0] = F0[N0] + 1; goto CHANGE; }
T0[L0] = -I0-1; T0[I0+1] = T0[I0]; F0[L0] = F0[L0] + 1; I0 = L0; goto CHANGE;
}
Y0 = I0;
if (I0 != L0)
{
F0[L0] = X0 = F0[L0] - 1; F0[I0 - 1] = F0[I0];
if (L0 == N0)
{
if (I0 == (F0[N0] - 1)) { I0 = T0[I0]; goto CHANGE; }
T0[F0[N0]-1] = -I0-1; T0[I0+1] = T0[I0]; I0 = F0[N0] - 1; goto CHANGE;
}
T0[L0] = -I0 -1; T0[I0 + 1] = T0[I0]; I0 = L0; goto CHANGE;
}
X0 = N0; F0[L0 - 1] = F0[L0]; F0[N0] = N0; L0 = N0;
if (I0 == N0 - 1) { I0 = T0[N0 - 1]; goto CHANGE; }
T0[N0 - 1] = -I0 - 1; T0[I0 + 1] = T0[I0]; I0 = N0 - 1;
CHANGE:
A0[X0] = 1; A0[Y0] = 0; H0[X0] = Z0 = H0[Y0]; C0[Z0] = X0;
}
} while (true);
newdim_subspaces.shrink_to_fit();
subspaces.push_back(newdim_subspaces);
}
#undef Ci
#undef N0
}
void show_subspaces(ofstream &fout)
{
fout << hex << setfill('0');
vector<vector<vector<uint8_t> > > subspaces;
gen_subspaces(subspaces);
for (auto newdim_subspaces: subspaces)
{
fout << "{" << endl;
int i = 0;
for (auto new_subspaces: newdim_subspaces)
{
fout << "{";
for (auto new_base: new_subspaces)
{
fout << "0x" << setw(2) << new_base + '\0' << ",";
}
fout << "}, ";
if ((i + 1) % 10 == 0) fout << endl;
}
fout << endl << "}," << endl;
}
}
Peigen::function_t<N> composite(const uint8_t sb2[], const uint8_t sb1[])
{
Peigen::function_t<N> func;
__m128i xmmsb1[LUT_XMM_N];
__m128i xmmsb2[LUT_XMM_N];
__m128i xmmsb3[LUT_XMM_N];
if (N == 3)
{
xmmsb2[0] = _mm_load_si128((__m128i *)(sb2));
xmmsb1[0] = _mm_load_si128((__m128i *)(sb1));
__m128i mask = _mm_set_epi64x(0x0, 0xffffffffffffffffULL);
xmmsb2[0] = _mm_and_si128(xmmsb2[0], mask);
xmmsb1[0] = _mm_and_si128(xmmsb1[0], mask);
xmmsb3[0] = _mm_shuffle_epi8(xmmsb2[0], xmmsb1[0]);
}
else if (N == 4)
{
xmmsb2[0] = _mm_load_si128((__m128i *)(sb2));
xmmsb1[0] = _mm_load_si128((__m128i *)(sb1));
xmmsb3[0] = _mm_shuffle_epi8(xmmsb2[0], xmmsb1[0]);
}
else
{
uint8_t sb3[LUT_UNIT_N];
for (int i = 0; i < LUT_UNIT_N; i++)
{
sb3[i] = sb2[sb1[i]];
}
for (int i = 0; i < LUT_XMM_N; i++)
{
xmmsb3[i] = _mm_loadu_si128((__m128i *)(sb3 + i * 16));
}
}
func.bit_slice = bit_slice(xmmsb3);
return func;
}
void composite(__m128i dst_xmm[LUT_XMM_N], const __m128i src_xmm2[LUT_XMM_N], const __m128i src_xmm1[LUT_XMM_N])
{
if ((N == 3) || (N == 4))
{
dst_xmm[0] = _mm_shuffle_epi8(src_xmm2[0], src_xmm1[0]);
}
else if (N <= 8)
{
uint8_t * sb3 = (uint8_t *) dst_xmm;
uint8_t * sb2 = (uint8_t *) src_xmm2;
uint8_t * sb1 = (uint8_t *) src_xmm1;
for (int i = 0; i < LUT_UNIT_N; i++)
{
sb3[i] = sb2[sb1[i]];
}
}
}
bit_slice_t<N> composite(const __m128i xmmsb2[LUT_XMM_N], const __m128i xmmsb1[LUT_XMM_N])
{
bit_slice_t<N> s = {{}};
__m128i xmmsb3[LUT_XMM_N];
composite(xmmsb3, xmmsb2, xmmsb1);
for (int i = 0; i < LUT_XMM_N; i++)
{
xmmsb3[i] = _mm_slli_epi16(xmmsb3[i], 8 - N);
}
for (int i = N - 1; i >= 0; i--)
{
for (int j = LUT_XMM_N - 1; j >= 0; j--)
{
s[i][(j*16)/UNIT_BIT_N] <<= 16;
s[i][(j*16)/UNIT_BIT_N] |= (unsigned short)_mm_movemask_epi8(xmmsb3[j]);
xmmsb3[j] = _mm_slli_epi16(xmmsb3[j], 1);
}
}
return s;
}
// From https://www.agner.org/optimize/#vectorclass
// C++ vector class library
// Horizontal add: Calculates the sum of all vector elements.
// Overflow will wrap around
int32_t horizontal_add (__m128i const & a) {
#ifdef __XOP__ // AMD XOP instruction set
__m128i sum1 = _mm_haddq_epi32(a);
__m128i sum2 = _mm_shuffle_epi32(sum1,0x0E); // high element
__m128i sum3 = _mm_add_epi32(sum1,sum2); // sum
return _mm_cvtsi128_si32(sum3); // truncate to 32 bits
#elif INSTRSET >= 4 // SSSE3
__m128i sum1 = _mm_hadd_epi32(a,a); // horizontally add 4 elements in 2 steps
__m128i sum2 = _mm_hadd_epi32(sum1,sum1);
return _mm_cvtsi128_si32(sum2); // 32 bit sum
#else // SSE2
__m128i sum1 = _mm_shuffle_epi32(a,0x0E); // 2 high elements
__m128i sum2 = _mm_add_epi32(a,sum1); // 2 sums
__m128i sum3 = _mm_shuffle_epi32(sum2,0x01); // 1 high element
__m128i sum4 = _mm_add_epi32(sum2,sum3); // 2 sums
return _mm_cvtsi128_si32(sum4); // 32 bit sum
#endif
}
void mulHM (int D[LUT_UNIT_N][LUT_UNIT_N], const int S1[LUT_UNIT_N][LUT_UNIT_N])
{
#if 0
__m128i HC[(LUT_UNIT_N >> 2)];
for (int ci = 0; ci < LUT_UNIT_N; ci++)
{
switch (N)
{
case 3: for (int wi = 0; wi < (LUT_UNIT_N >> 2); wi++) HC[wi] = _mm_load_si128(((__m128i *)(H3[ci])) + wi); break;
case 4: for (int wi = 0; wi < (LUT_UNIT_N >> 2); wi++) HC[wi] = _mm_load_si128(((__m128i *)(H4[ci])) + wi); break;
case 5: for (int wi = 0; wi < (LUT_UNIT_N >> 2); wi++) HC[wi] = _mm_load_si128(((__m128i *)(H5[ci])) + wi); break;
case 6: for (int wi = 0; wi < (LUT_UNIT_N >> 2); wi++) HC[wi] = _mm_load_si128(((__m128i *)(H6[ci])) + wi); break;
case 7: for (int wi = 0; wi < (LUT_UNIT_N >> 2); wi++) HC[wi] = _mm_load_si128(((__m128i *)(H7[ci])) + wi); break;
case 8: for (int wi = 0; wi < (LUT_UNIT_N >> 2); wi++) HC[wi] = _mm_load_si128(((__m128i *)(H8[ci])) + wi); break;
default: break;
}
for (int ri = 0; ri < LUT_UNIT_N; ri++)
{
int sum = 0;
__m128i S1r;
for (int wi = 0; wi < (LUT_UNIT_N >> 2); wi++)
{
S1r = _mm_loadu_si128(((__m128i *)(S1[ri])) + wi);
sum += horizontal_add(_mm_mullo_epi32(S1r, HC[wi]));
}
D[ri][ci] = sum;
}
}
#endif
#if 1
int HC[LUT_UNIT_N];
for (int ci = 0; ci < LUT_UNIT_N; ci++)
{
switch (N)
{
case 3: for (int ri = 0; ri < LUT_UNIT_N; ri++) HC[ri] = H3[ri][ci]; break;
case 4: for (int ri = 0; ri < LUT_UNIT_N; ri++) HC[ri] = H4[ri][ci]; break;
case 5: for (int ri = 0; ri < LUT_UNIT_N; ri++) HC[ri] = H5[ri][ci]; break;
case 6: for (int ri = 0; ri < LUT_UNIT_N; ri++) HC[ri] = H6[ri][ci]; break;
case 7: for (int ri = 0; ri < LUT_UNIT_N; ri++) HC[ri] = H7[ri][ci]; break;
case 8: for (int ri = 0; ri < LUT_UNIT_N; ri++) HC[ri] = H8[ri][ci]; break;
default: break;
}
for (int ri = 0; ri < LUT_UNIT_N; ri++)
{
int sum = 0;
for (int wi = 0; wi < LUT_UNIT_N; wi++)
{
sum += S1[ri][wi] * HC[wi];
}
D[ri][ci] = sum;
}
}
#endif
}
template<typename T>
string show_matrix(T * matrix, int rn, int cn)
{
stringstream ss;
ss << "{" << endl;
for (int i = 0; i < rn; i++)
{
ss << "{";
for (int j = 0; j < cn; j++)
{
ss << setw((int)log10(1<<N)+2) << (*(matrix + i * cn + j)) << ", ";
}
ss <<"}," << endl;
}
ss << "};" << endl;
return ss.str();
}
template<typename T>
string show_matrix_HWorder(T matrix[LUT_UNIT_N][LUT_UNIT_N])
{
stringstream ss;
ss << "{" << endl;
ss << setw((N+3)/4 + 3) << " " << hex;
for (int j = 0; j < LUT_UNIT_N; j++)
{
ss << setw((int)log10(1<<N)+2) << HWorder<N>[j] << "| ";
}
ss << endl << setfill(' ') << dec;
for (int i = 0; i < LUT_UNIT_N; i++)
{
ss << "{";
ss << setfill('0') << hex << setw((N+3)/4) << HWorder<N>[i] << ": ";
ss << setfill(' ') << dec;
for (int j = 0; j < LUT_UNIT_N; j++)
{
ss << setw((int)log10(1<<N)+2) << matrix[HWorder<N>[i]][HWorder<N>[j]] << ", ";
}
ss <<"}," << endl;
}
ss << "};" << endl;
return ss.str();
}
template<typename T>
string show_indicate_matrix_HWorder(T matrix[LUT_UNIT_N][LUT_UNIT_N])
{
stringstream ss;
ss << "{" << endl;
ss << setw((N+3)/4 + 3) << " " << hex;
for (int j = 0; j < LUT_UNIT_N; j++)
{
ss << setw((N+3)/4 + 1) << HWorder<N>[j] << "| ";
}
ss << endl << setfill(' ') << dec;
for (int i = 0; i < LUT_UNIT_N; i++)
{
ss << "{";
ss << setfill('0') << hex << setw((N+3)/4) << HWorder<N>[i] << ": ";
ss << setfill(' ') << dec;
for (int j = 0; j < LUT_UNIT_N; j++)
{
if (matrix[HWorder<N>[i]][HWorder<N>[j]] == 0)