-
-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
export.py
1574 lines (1329 loc) · 67.9 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Ultralytics YOLOv3 🚀, AGPL-3.0 license
"""
Export a YOLOv3 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit.
Format | `export.py --include` | Model
--- | --- | ---
PyTorch | - | yolov5s.pt
TorchScript | `torchscript` | yolov5s.torchscript
ONNX | `onnx` | yolov5s.onnx
OpenVINO | `openvino` | yolov5s_openvino_model/
TensorRT | `engine` | yolov5s.engine
CoreML | `coreml` | yolov5s.mlmodel
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
TensorFlow GraphDef | `pb` | yolov5s.pb
TensorFlow Lite | `tflite` | yolov5s.tflite
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov5s_web_model/
PaddlePaddle | `paddle` | yolov5s_paddle_model/
Requirements:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
Usage:
$ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
Inference:
$ python detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
TensorFlow.js:
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
$ npm install
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
$ npm start
"""
import argparse
import contextlib
import json
import os
import platform
import re
import subprocess
import sys
import time
import warnings
from pathlib import Path
import pandas as pd
import torch
from torch.utils.mobile_optimizer import optimize_for_mobile
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv3 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if platform.system() != "Windows":
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.experimental import attempt_load
from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
from utils.dataloaders import LoadImages
from utils.general import (
LOGGER,
Profile,
check_dataset,
check_img_size,
check_requirements,
check_version,
check_yaml,
colorstr,
file_size,
get_default_args,
print_args,
url2file,
yaml_save,
)
from utils.torch_utils import select_device, smart_inference_mode
MACOS = platform.system() == "Darwin" # macOS environment
class iOSModel(torch.nn.Module):
"""Exports a PyTorch model to an iOS-compatible format with normalized input dimensions and class configurations."""
def __init__(self, model, im):
"""
Initializes an iOSModel with normalized input dimensions and number of classes from a PyTorch model.
Args:
model (torch.nn.Module): The PyTorch model from which to initialize the iOS model. This should include attributes
like `nc` (number of classes) which will be used to configure the iOS model.
im (torch.Tensor): A Tensor representing a sample input image. The shape of this tensor should be
(batch_size, channels, height, width). This is used to extract dimensions for input normalization.
Returns:
None
Notes:
- This class is specifically designed for use in exporting a PyTorch model for deployment on iOS platforms, optimizing
input dimensions and class configurations to suit mobile requirements.
- Normalization factor is derived from the input image dimensions, which impacts the model's performance during
inference on iOS devices.
- Ensure the sample input image `im` provided has correct dimensions and shape for accurate model configuration.
"""
super().__init__()
b, c, h, w = im.shape # batch, channel, height, width
self.model = model
self.nc = model.nc # number of classes
if w == h:
self.normalize = 1.0 / w
else:
self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller)
# np = model(im)[0].shape[1] # number of points
# self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]).expand(np, 4) # explicit (faster, larger)
def forward(self, x):
"""
Performs a forward pass, returning scaled confidences and normalized coordinates given an input tensor.
Args:
x (torch.Tensor): Input tensor representing a batch of images, with dimensions [batch_size, channels,
height, width].
Returns:
tuple[torch.Tensor, torch.Tensor, torch.Tensor]: A tuple containing three elements:
- xywh (torch.Tensor): Tensor of shape [batch_size, num_detections, 4] containing normalized x, y, width,
and height coordinates.
- conf (torch.Tensor): Tensor of shape [batch_size, num_detections, 1] containing confidence scores for
each detection.
- cls (torch.Tensor): Tensor of shape [batch_size, num_detections, num_classes] containing class
probabilities.
Notes:
The dimensions of `x` should match the input dimensions used during the model's initialization to ensure
proper scaling and normalization.
Examples:
```python
model = iOSModel(trained_model, input_image_tensor)
detection_results = model.forward(input_tensor)
xywh, conf, cls = detection_results
```
Further reading on exporting models to different formats:
https://github.com/ultralytics/ultralytics
See Also:
`export.py` for exporting a YOLOv3 PyTorch model to various formats.
https://github.com/zldrobit for TensorFlow export scripts.
"""
xywh, conf, cls = self.model(x)[0].squeeze().split((4, 1, self.nc), 1)
return cls * conf, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)
def export_formats():
"""
Lists supported YOLOv3 model export formats including file suffixes and CPU/GPU compatibility.
Returns:
list: A list of lists where each sublist contains information about a specific export format. Each sublist includes
the following elements:
- str: The name of the format.
- str: The command-line argument for including this format.
- str: The file suffix used for this format.
- bool: Indicates if the format is compatible with CPU.
- bool: Indicates if the format is compatible with GPU.
Examples:
```python
formats = export_formats()
for format in formats:
print(f"Format: {format[0]}, Suffix: {format[2]}, CPU Compatible: {format[3]}, GPU Compatible: {format[4]}")
```
"""
x = [
["PyTorch", "-", ".pt", True, True],
["TorchScript", "torchscript", ".torchscript", True, True],
["ONNX", "onnx", ".onnx", True, True],
["OpenVINO", "openvino", "_openvino_model", True, False],
["TensorRT", "engine", ".engine", False, True],
["CoreML", "coreml", ".mlmodel", True, False],
["TensorFlow SavedModel", "saved_model", "_saved_model", True, True],
["TensorFlow GraphDef", "pb", ".pb", True, True],
["TensorFlow Lite", "tflite", ".tflite", True, False],
["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", False, False],
["TensorFlow.js", "tfjs", "_web_model", False, False],
["PaddlePaddle", "paddle", "_paddle_model", True, True],
]
return pd.DataFrame(x, columns=["Format", "Argument", "Suffix", "CPU", "GPU"])
def try_export(inner_func):
"""
Profiles and logs the export process of YOLOv3 models, capturing success or failure details.
Args:
inner_func (Callable): The function that performs the actual export process and returns the model file path
and the exported model.
Returns:
Callable: A wrapped function that profiles and logs the export process, handling successes and failures.
Examples:
```python
@try_export
def export_onnx(py_model_path: str, output_path: str):
# Export logic here
return output_path, model
```
Notes:
Applying this decorator to an export function will log the export results, including export success or failure,
along with associated time and file size details.
"""
inner_args = get_default_args(inner_func)
def outer_func(*args, **kwargs):
"""Profiles and logs the export process of YOLOv3 models, capturing success or failure details."""
prefix = inner_args["prefix"]
try:
with Profile() as dt:
f, model = inner_func(*args, **kwargs)
LOGGER.info(f"{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)")
return f, model
except Exception as e:
LOGGER.info(f"{prefix} export failure ❌ {dt.t:.1f}s: {e}")
return None, None
return outer_func
@try_export
def export_torchscript(model, im, file, optimize, prefix=colorstr("TorchScript:")):
"""
Export a YOLOv3 model to TorchScript format, with optional optimization for mobile deployment.
Args:
model (torch.nn.Module): The YOLOv3 model to be exported.
im (torch.Tensor): A tensor representing the input image for the model, typically with shape (N, 3, H, W).
file (pathlib.Path): The file path where the TorchScript model will be saved.
optimize (bool): A boolean flag indicating whether to optimize the model for mobile devices.
prefix (str): A prefix for logging messages. Defaults to `colorstr("TorchScript:")`.
Returns:
(pathlib.Path | None, torch.nn.Module | None): Tuple containing the path to the saved TorchScript model and the
model itself. Returns `(None, None)` if the export fails.
Raises:
Exception: If there is an error during export, it logs the error and returns `(None, None)`.
Notes:
The function uses `torch.jit.trace` to trace the model with the input image tensor (`im`). Required metadata such as
input shape, stride, and class names are stored in an extra file included in the TorchScript model.
Examples:
```python
from pathlib import Path
import torch
model = ... # Assume model is loaded or created
im = torch.randn(1, 3, 640, 640) # A sample input tensor
file = Path("model.torchscript")
optimize = True
export_torchscript(model, im, file, optimize)
```
For more information, visit: https://ultralytics.com/.
"""
LOGGER.info(f"\n{prefix} starting export with torch {torch.__version__}...")
f = file.with_suffix(".torchscript")
ts = torch.jit.trace(model, im, strict=False)
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
extra_files = {"config.txt": json.dumps(d)} # torch._C.ExtraFilesMap()
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
else:
ts.save(str(f), _extra_files=extra_files)
return f, None
@try_export
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr("ONNX:")):
"""
Export a YOLOv3 model to ONNX format with dynamic shape and simplification options.
Args:
model (torch.nn.Module): The YOLOv3 model to be exported.
im (torch.Tensor): A sample input tensor for tracing the model.
file (pathlib.Path): The file path where the ONNX model will be saved.
opset (int): The ONNX opset version to use for the export.
dynamic (bool): If `True`, enables dynamic shape support.
simplify (bool): If `True`, simplifies the ONNX model using onnx-simplifier.
prefix (str): A prefix for logging messages.
Returns:
tuple[pathlib.Path, None]: The path to the saved ONNX model, None as the second tuple element (kept for consistency).
Example:
```python
from pathlib import Path
import torch
model = ... # Assume model is loaded or created
im = torch.randn(1, 3, 640, 640) # A sample input tensor
file = Path("model.onnx")
opset = 12
dynamic = True
simplify = True
export_onnx(model, im, file, opset, dynamic, simplify)
```
Notes:
Ensure `onnx`, `onnx-simplifier`, and suitable runtime packages are installed.
This function uses `torch.onnx.export` to create the ONNX model, followed by optional simplification using
`onnx-simplifier`. If `dynamic` is enabled, dynamic axes mappings are added to support variable input shapes.
Relevant YOLO model metadata like `stride` and `names` are included as part of the ONNX model's metadata.
For more details on exporting and running inferences, visit:
- https://github.com/ultralytics/ultralytics
- https://github.com/zldrobit for TensorFlow export scripts.
"""
check_requirements("onnx>=1.12.0")
import onnx
LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__}...")
f = file.with_suffix(".onnx")
output_names = ["output0", "output1"] if isinstance(model, SegmentationModel) else ["output0"]
if dynamic:
dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640)
if isinstance(model, SegmentationModel):
dynamic["output0"] = {0: "batch", 1: "anchors"} # shape(1,25200,85)
dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160)
elif isinstance(model, DetectionModel):
dynamic["output0"] = {0: "batch", 1: "anchors"} # shape(1,25200,85)
torch.onnx.export(
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
im.cpu() if dynamic else im,
f,
verbose=False,
opset_version=opset,
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
input_names=["images"],
output_names=output_names,
dynamic_axes=dynamic or None,
)
# Checks
model_onnx = onnx.load(f) # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
# Metadata
d = {"stride": int(max(model.stride)), "names": model.names}
for k, v in d.items():
meta = model_onnx.metadata_props.add()
meta.key, meta.value = k, str(v)
onnx.save(model_onnx, f)
# Simplify
if simplify:
try:
cuda = torch.cuda.is_available()
check_requirements(("onnxruntime-gpu" if cuda else "onnxruntime", "onnx-simplifier>=0.4.1"))
import onnxsim
LOGGER.info(f"{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...")
model_onnx, check = onnxsim.simplify(model_onnx)
assert check, "assert check failed"
onnx.save(model_onnx, f)
except Exception as e:
LOGGER.info(f"{prefix} simplifier failure: {e}")
return f, model_onnx
@try_export
def export_openvino(file, metadata, half, int8, data, prefix=colorstr("OpenVINO:")):
"""
Export a YOLOv3 model to OpenVINO format with optional INT8 quantization and inference metadata.
Args:
file (Path): Path to the output file.
metadata (dict): Inference metadata to include in the exported model.
half (bool): Indicates if FP16 precision should be used.
int8 (bool): Indicates if INT8 quantization should be applied.
data (str): Path to the dataset file (.yaml) for post-training quantization.
Returns:
tuple[Path | None, openvino.runtime.Model | None]: Tuple containing the path to the exported model and the OpenVINO
model object, or None if the export failed.
Notes:
- Requires the `openvino-dev>=2023.0` and optional `nncf>=2.4.0` package for INT8 quantization.
- Refer to OpenVINO documentation for further details: https://docs.openvino.ai/latest/index.html.
Examples:
```python
model_file = Path('/path/to/model.onnx')
metadata = {'names': ['class1', 'class2'], 'stride': 32}
export_openvino(model_file, metadata, half=True, int8=False, data='/path/to/dataset.yaml')
```
"""
check_requirements("openvino-dev>=2023.0") # requires openvino-dev: https://pypi.org/project/openvino-dev/
import openvino.runtime as ov # noqa
from openvino.tools import mo # noqa
LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
f = str(file).replace(file.suffix, f"_openvino_model{os.sep}")
f_onnx = file.with_suffix(".onnx")
f_ov = str(Path(f) / file.with_suffix(".xml").name)
if int8:
check_requirements("nncf>=2.4.0") # requires at least version 2.4.0 to use the post-training quantization
import nncf
import numpy as np
from openvino.runtime import Core
from utils.dataloaders import create_dataloader
core = Core()
onnx_model = core.read_model(f_onnx) # export
def prepare_input_tensor(image: np.ndarray):
"""Prepares the input tensor by normalizing pixel values and converting the datatype to float32."""
input_tensor = image.astype(np.float32) # uint8 to fp16/32
input_tensor /= 255.0 # 0 - 255 to 0.0 - 1.0
if input_tensor.ndim == 3:
input_tensor = np.expand_dims(input_tensor, 0)
return input_tensor
def gen_dataloader(yaml_path, task="train", imgsz=640, workers=4):
"""Generates a PyTorch dataloader for the specified task using dataset configurations from a YAML file."""
data_yaml = check_yaml(yaml_path)
data = check_dataset(data_yaml)
dataloader = create_dataloader(
data[task], imgsz=imgsz, batch_size=1, stride=32, pad=0.5, single_cls=False, rect=False, workers=workers
)[0]
return dataloader
# noqa: F811
def transform_fn(data_item):
"""
Quantization transform function.
Extracts and preprocess input data from dataloader item for quantization.
Parameters:
data_item: Tuple with data item produced by DataLoader during iteration
Returns:
input_tensor: Input data for quantization
"""
img = data_item[0].numpy()
input_tensor = prepare_input_tensor(img)
return input_tensor
ds = gen_dataloader(data)
quantization_dataset = nncf.Dataset(ds, transform_fn)
ov_model = nncf.quantize(onnx_model, quantization_dataset, preset=nncf.QuantizationPreset.MIXED)
else:
ov_model = mo.convert_model(f_onnx, model_name=file.stem, framework="onnx", compress_to_fp16=half) # export
ov.serialize(ov_model, f_ov) # save
yaml_save(Path(f) / file.with_suffix(".yaml").name, metadata) # add metadata.yaml
return f, None
@try_export
def export_paddle(model, im, file, metadata, prefix=colorstr("PaddlePaddle:")):
"""
Export a YOLOv3 model to PaddlePaddle format using X2Paddle, saving to a specified directory and including model
metadata.
Args:
model (torch.nn.Module): The YOLOv3 model to be exported.
im (torch.Tensor): A sample input tensor used for tracing the model.
file (pathlib.Path): Destination file path for the exported model, with `.pt` suffix.
metadata (dict): Additional metadata to be saved in YAML format alongside the exported model.
prefix (str, optional): Log message prefix. Defaults to a colored "PaddlePaddle:" string.
Returns:
tuple: A tuple containing the directory path (str) where the PaddlePaddle model is saved, and `None`.
Requirements:
- paddlepaddle: Install via `pip install paddlepaddle`.
- x2paddle: Install via `pip install x2paddle`.
Notes:
The function first checks for required packages `paddlepaddle` and `x2paddle`. It then uses X2Paddle to trace
the model and export it to a PaddlePaddle format, saving the resulting files in the specified directory with
included metadata in a YAML file.
Example:
```python
from pathlib import Path
import torch
from models.yolo import DetectionModel
model = DetectionModel() # Example model initialization
im = torch.rand(1, 3, 640, 640) # Example input tensor
file = Path("path/to/save/model.pt")
metadata = {"nc": 80, "names": ["class1", "class2", ...]} # Example metadata
export_paddle(model, im, file, metadata)
```
"""
check_requirements(("paddlepaddle", "x2paddle"))
import x2paddle
from x2paddle.convert import pytorch2paddle
LOGGER.info(f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}...")
f = str(file).replace(".pt", f"_paddle_model{os.sep}")
pytorch2paddle(module=model, save_dir=f, jit_type="trace", input_examples=[im]) # export
yaml_save(Path(f) / file.with_suffix(".yaml").name, metadata) # add metadata.yaml
return f, None
@try_export
def export_coreml(model, im, file, int8, half, nms, prefix=colorstr("CoreML:")):
"""
Export a YOLOv3 model to CoreML format with optional quantization and Non-Maximum Suppression (NMS).
Args:
model (torch.nn.Module): The YOLOv3 model to be exported.
im (torch.Tensor): Input tensor used for tracing the model. Shape should be (batch_size, channels, height, width).
file (pathlib.Path): Destination file path where the CoreML model will be saved.
int8 (bool): Whether to use INT8 quantization. If True, quantizes the model to 8-bit integers.
half (bool): Whether to use FP16 quantization. If True, converts the model to 16-bit floating point numbers.
nms (bool): Whether to include Non-Maximum Suppression in the CoreML model.
prefix (str): Prefix string for logging purposes. Default is colorstr("CoreML:").
Returns:
str: Path to the saved CoreML model (.mlmodel).
Raises:
Exception: If there is an error during export, logs the error and stops the process.
Notes:
- This function requires `coremltools` to be installed.
- If `nms` is enabled, the model is wrapped with `iOSModel` to include NMS.
- Quantization only works on macOS.
Example:
```python
from ultralytics.utils import export_coreml
from pathlib import Path
import torch
model = ... # Assume model is loaded or created
im = torch.randn(1, 3, 640, 640) # A sample input tensor
file = Path("model.mlmodel")
export_coreml(model, im, file, int8=False, half=True, nms=True)
```
"""
check_requirements("coremltools")
import coremltools as ct
LOGGER.info(f"\n{prefix} starting export with coremltools {ct.__version__}...")
f = file.with_suffix(".mlmodel")
if nms:
model = iOSModel(model, im)
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
ct_model = ct.convert(ts, inputs=[ct.ImageType("image", shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
bits, mode = (8, "kmeans_lut") if int8 else (16, "linear") if half else (32, None)
if bits < 32:
if MACOS: # quantization only supported on macOS
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
else:
print(f"{prefix} quantization only supported on macOS, skipping...")
ct_model.save(f)
return f, ct_model
@try_export
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr("TensorRT:")):
"""
Export a YOLOv3 model to TensorRT engine format, optimizing it for GPU inference.
Args:
model (torch.nn.Module): The YOLOv3 model to be exported.
im (torch.Tensor): Sample input tensor used for tracing the model.
file (Path): File path where the exported TensorRT engine will be saved.
half (bool): Whether to use FP16 precision. Requires a supported GPU.
dynamic (bool): Whether to use dynamic input shapes.
simplify (bool): Whether to simplify the model during the ONNX export.
workspace (int): The maximum workspace size in GB. Default is 4.
verbose (bool): Whether to print detailed export logs.
prefix (str): Prefix string for log messages. Default is "TensorRT:".
Returns:
tuple[Path, None]: The output file path (Path) and None.
Raises:
AssertionError: If the model is running on CPU instead of GPU.
RuntimeError: If the ONNX file failed to load.
Notes:
Requires TensorRT installation to execute. Nvidia TensorRT: https://developer.nvidia.com/tensorrt
Example:
```python
from pathlib import Path
import torch
# Initialize model and dummy input
model = YOLOv3(...) # or another correct initialization
im = torch.randn(1, 3, 640, 640)
# Export the model
export_engine(model, im, Path("yolov3.engine"), half=True, dynamic=True, simplify=True)
```
"""
assert im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. `python export.py --device 0`"
try:
import tensorrt as trt
except Exception:
if platform.system() == "Linux":
check_requirements("nvidia-tensorrt", cmds="-U --index-url https://pypi.ngc.nvidia.com")
import tensorrt as trt
if trt.__version__[0] == "7": # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
grid = model.model[-1].anchor_grid
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
model.model[-1].anchor_grid = grid
else: # TensorRT >= 8
check_version(trt.__version__, "8.0.0", hard=True) # require tensorrt>=8.0.0
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
onnx = file.with_suffix(".onnx")
LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
assert onnx.exists(), f"failed to export ONNX file: {onnx}"
f = file.with_suffix(".engine") # TensorRT engine file
logger = trt.Logger(trt.Logger.INFO)
if verbose:
logger.min_severity = trt.Logger.Severity.VERBOSE
builder = trt.Builder(logger)
config = builder.create_builder_config()
config.max_workspace_size = workspace * 1 << 30
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
network = builder.create_network(flag)
parser = trt.OnnxParser(network, logger)
if not parser.parse_from_file(str(onnx)):
raise RuntimeError(f"failed to load ONNX file: {onnx}")
inputs = [network.get_input(i) for i in range(network.num_inputs)]
outputs = [network.get_output(i) for i in range(network.num_outputs)]
for inp in inputs:
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
for out in outputs:
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
if dynamic:
if im.shape[0] <= 1:
LOGGER.warning(f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument")
profile = builder.create_optimization_profile()
for inp in inputs:
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
config.add_optimization_profile(profile)
LOGGER.info(f"{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}")
if builder.platform_has_fast_fp16 and half:
config.set_flag(trt.BuilderFlag.FP16)
with builder.build_engine(network, config) as engine, open(f, "wb") as t:
t.write(engine.serialize())
return f, None
@try_export
def export_saved_model(
model,
im,
file,
dynamic,
tf_nms=False,
agnostic_nms=False,
topk_per_class=100,
topk_all=100,
iou_thres=0.45,
conf_thres=0.25,
keras=False,
prefix=colorstr("TensorFlow SavedModel:"),
):
"""
Exports a YOLOv3 model to TensorFlow SavedModel format, including optional settings for Non-Max Suppression (NMS).
Args:
model (torch.nn.Module): The YOLOv3 PyTorch model to be exported.
im (torch.Tensor): Tensor of sample input data used for tracing the model.
file (pathlib.Path): File path where the exported TensorFlow SavedModel will be saved.
dynamic (bool): If `True`, supports dynamic input shapes.
tf_nms (bool, optional): If `True`, includes TensorFlow NMS in the exported model. Defaults to `False`.
agnostic_nms (bool, optional): If `True`, uses class-agnostic NMS. Defaults to `False`.
topk_per_class (int, optional): Number of top-K predictions to keep per class after NMS. Defaults to `100`.
topk_all (int, optional): Number of top-K predictions to keep overall after NMS. Defaults to `100`.
iou_thres (float, optional): Intersection over Union (IoU) threshold for NMS. Defaults to `0.45`.
conf_thres (float, optional): Confidence threshold for NMS. Defaults to `0.25`.
keras (bool, optional): If `True`, saves the model in Keras format. Defaults to `False`.
prefix (str, optional): Prefix for logging messages. Defaults to `colorstr("TensorFlow SavedModel:")`.
Returns:
(str, None): Path to the saved TensorFlow model as a string and `None` (kept for interface consistency).
Raises:
ImportError: If the required TensorFlow libraries are not installed.
Examples:
```python
from pathlib import Path
from models.common import DetectMultiBackend
import torch
model = DetectMultiBackend(weights='yolov5s.pt')
im = torch.zeros(1, 3, 640, 640) # Sample input tensor
file = Path("output/saved_model")
export_saved_model(model, im, file, dynamic=True)
```
Notes:
- Ensure that required TensorFlow libraries are installed (e.g., `pip install tensorflow`).
- For more information, visit https://github.com/ultralytics/yolov5.
"""
# YOLOv3 TensorFlow SavedModel export
try:
import tensorflow as tf
except Exception:
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
import tensorflow as tf
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
from models.tf import TFModel
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
f = str(file).replace(".pt", "_saved_model")
batch_size, ch, *imgsz = list(im.shape) # BCHW
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
keras_model.trainable = False
keras_model.summary()
if keras:
keras_model.save(f, save_format="tf")
else:
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
m = tf.function(lambda x: keras_model(x)) # full model
m = m.get_concrete_function(spec)
frozen_func = convert_variables_to_constants_v2(m)
tfm = tf.Module()
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
tfm.__call__(im)
tf.saved_model.save(
tfm,
f,
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False)
if check_version(tf.__version__, "2.6")
else tf.saved_model.SaveOptions(),
)
return f, keras_model
@try_export
def export_pb(keras_model, file, prefix=colorstr("TensorFlow GraphDef:")):
"""
Export a Keras model to TensorFlow GraphDef (*.pb) format, which is compatible with YOLOv3.
Args:
keras_model (tf.keras.Model): The trained Keras model to be exported.
file (pathlib.Path): The target file path for saving the exported model.
prefix (str, optional): Prefix string for logging. Defaults to colorstr("TensorFlow GraphDef:").
Returns:
tuple[pathlib.Path, None]: The file path where the model is saved and None.
Example:
```python
from tensorflow.keras.models import load_model
from pathlib import Path
export_pb(load_model('model.h5'), Path('model.pb'))
```
See Also:
For more details on TensorFlow GraphDef, visit
https://github.com/leimao/Frozen_Graph_TensorFlow.
Notes:
Ensure TensorFlow is properly installed in your environment as it is required for this function to execute.
TensorFlow's version should be compatible with the version used to train your model to avoid any compatibility
issues.
"""
import tensorflow as tf
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
f = file.with_suffix(".pb")
m = tf.function(lambda x: keras_model(x)) # full model
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
frozen_func = convert_variables_to_constants_v2(m)
frozen_func.graph.as_graph_def()
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
return f, None
@try_export
def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr("TensorFlow Lite:")):
"""
Export a YOLOv3 PyTorch model to TensorFlow Lite (TFLite) format.
Args:
keras_model (tf.keras.Model): The Keras model obtained after converting the PyTorch model.
im (torch.Tensor): Sample input tensor to determine model input size.
file (pathlib.Path): Desired file path for saving the exported TFLite model.
int8 (bool): Flag to enable INT8 quantization for the TFLite model.
data (str): Path to dataset YAML file for representative data generation used in quantization.
nms (bool): Flag to include Non-Maximum Suppression (NMS) in the exported TFLite model.
agnostic_nms (bool): Flag to apply class-agnostic NMS during inference.
prefix (str, optional): Prefix for logging messages. Defaults to colorstr("TensorFlow Lite:").
Returns:
(str | None): File path of the saved TensorFlow Lite model file or None if export fails.
Notes:
- Ensure TensorFlow is installed to perform the export.
- INT8 quantization requires a representative dataset to provide accurate calibration for the model.
- Including Non-Max Suppression (NMS) modifies the exported model to handle post-processing.
Example:
```python
import torch
from pathlib import Path
from models.experimental import attempt_load
# Load and prepare model
model = attempt_load('yolov5s.pt', map_location='cpu')
im = torch.zeros(1, 3, 640, 640) # Dummy input tensor
# Export model
export_tflite(model, im, Path('yolov5s'), int8=False, data=None, nms=True, agnostic_nms=False)
```
For more details, refer to:
TensorFlow Lite Developer Guide: https://www.tensorflow.org/lite/guide
Model Conversion Reference: https://github.com/leimao/Frozen_Graph_TensorFlow
"""
import tensorflow as tf
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
batch_size, ch, *imgsz = list(im.shape) # BCHW
f = str(file).replace(".pt", "-fp16.tflite")
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
converter.target_spec.supported_types = [tf.float16]
converter.optimizations = [tf.lite.Optimize.DEFAULT]
if int8:
from models.tf import representative_dataset_gen
dataset = LoadImages(check_dataset(check_yaml(data))["train"], img_size=imgsz, auto=False)
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.target_spec.supported_types = []
converter.inference_input_type = tf.uint8 # or tf.int8
converter.inference_output_type = tf.uint8 # or tf.int8
converter.experimental_new_quantizer = True
f = str(file).replace(".pt", "-int8.tflite")
if nms or agnostic_nms:
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
tflite_model = converter.convert()
open(f, "wb").write(tflite_model)
return f, None
@try_export
def export_edgetpu(file, prefix=colorstr("Edge TPU:")):
"""
Export a YOLOv5 model to TensorFlow Edge TPU format with INT8 quantization.
Args:
file (Path): The file path for the PyTorch model to be exported, with a `.pt` suffix.
prefix (str): A prefix to be used for logging output. Defaults to "Edge TPU:"
Returns:
Tuple[Path | None, None]: A tuple containing the file path of the exported model with the `-int8_edgetpu.tflite`
suffix and `None`, if successful. If unsuccessful, returns `(None, None)`.
Raises:
AssertionError: If the export is not executed on a Linux system.
subprocess.CalledProcessError: If there are issues with subprocess execution, particularly around Edge TPU compiler
installation or model conversion.
Notes:
This function is designed to work exclusively on Linux systems and requires the Edge TPU compiler to be installed.
If the compiler is not found, the function attempts to install it.
Example:
```python
from pathlib import Path
from ultralytics import export_edgetpu
model_file = Path('yolov5s.pt')
exported_model, _ = export_edgetpu(model_file)
print(f"Model exported to {exported_model}")
```
For additional details, visit the Edge TPU compiler documentation:
https://coral.ai/docs/edgetpu/compiler/
"""
cmd = "edgetpu_compiler --version"
help_url = "https://coral.ai/docs/edgetpu/compiler/"
assert platform.system() == "Linux", f"export only supported on Linux. See {help_url}"
if subprocess.run(f"{cmd} > /dev/null 2>&1", shell=True).returncode != 0:
LOGGER.info(f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}")
sudo = subprocess.run("sudo --version >/dev/null", shell=True).returncode == 0 # sudo installed on system
for c in (
"curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -",
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
"sudo apt-get update",
"sudo apt-get install edgetpu-compiler",
):
subprocess.run(c if sudo else c.replace("sudo ", ""), shell=True, check=True)
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
f = str(file).replace(".pt", "-int8_edgetpu.tflite") # Edge TPU model
f_tfl = str(file).replace(".pt", "-int8.tflite") # TFLite model
subprocess.run(
[
"edgetpu_compiler",
"-s",
"-d",
"-k",
"10",
"--out_dir",
str(file.parent),
f_tfl,
],
check=True,
)
return f, None
@try_export
def export_tfjs(file, int8, prefix=colorstr("TensorFlow.js:")):
"""
Export a YOLOv3 model to TensorFlow.js format, with an optional quantization to uint8.
Args:
file (Path): The path to the model file to be exported.
int8 (bool): Boolean flag to determine if the model should be quantized to uint8.
prefix (str): String prefix for logging, by default "TensorFlow.js".
Returns:
(tuple[str, None]): The directory path where the TensorFlow.js model files are saved and `None` placeholder to match
the expected return type from 'try_export' decorator.
Raises:
ImportError: If the required 'tensorflowjs' package is not installed.
Example:
```python
from pathlib import Path
export_tfjs(file=Path("yolov5s.pt"), int8=False)
```
Note:
Ensure that you have TensorFlow.js installed in your environment. Install the package via:
```bash
pip install tensorflowjs
```
For more details on using the converted model:
Refer to the official TensorFlow.js documentation: https://www.tensorflow.org/js.