Skip to content

This Module helps to select the base model over various ML Algorithms for our classification

License

Notifications You must be signed in to change notification settings

BALAVIGNESHDOSTRIX/maxiverse

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Project Scope

This Module help to select the base model over various ML Algorithms for our classification

Installation

pip3 install maxiverse (or) pip3 install maxiverse_(version)

Usage

>>> from maxiverse.classifier.evaluator import EvalModel
>>> 
>>> EvalModel._has_classifier()
# ['logreg', 'svm', 'dtree', 'rnf', 'nvbys', 'adabst', 'knn', 'xgbst']
>>> 
>>> 
>>> EvalModel(X_train, Y_train, 10)._perform_validate(['knn'])
         KNearestClassifier	Best Score
Accuracy	0.978644	    KNearest Classifier
Precision	0.992221	    KNearest Classifier
Recall	    0.964826	    KNearest Classifier
F1 Score	0.978320	    KNearest Classifier
>>> 
>>> EvalModel(X_train, Y_train, 20)._perform_validate(['knn', 'rnf'])
         KNearestClassifier	Random Forest Best Score
Accuracy	0.978644	      0.983600    RandomForest
Precision	0.992221	      0.994982    RandomForest
Recall	    0.964826	      0.972086    RandomForest
F1 Score	0.978320	      0.983391    RandomForest

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

License

MIT

About

This Module helps to select the base model over various ML Algorithms for our classification

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages