Betweenness Centrality for large sparse graphs on GPU using CUDA
- Dibyadarshan Hota 16CO154
- Omkar Prabhu 16CO233
-
Random Graph Generator
$ g++ g_generator.cpp $ ./a.out > graph10p4 65536 65536
-
Serial Implementation
$ g++ serial.cc $ ./a.out < graph10p4
-
Parallel Implementation using using Work-efficient Method(p_imp_1)
$ nvcc main_work_efficient_parallel.cu $ ./a.out < graph10p4
-
Parallel Implementation using Vertex-parallel Method (p_imp_2)
$ nvcc main_vertex_parallel.cu $ ./a.out < graph10p4
main_work_efficient_parallel.cu
orp_imp_1.cu
- Parallel Implementation using Work-efficient Methodmain_vertex_parallel.cu
orp_imp_2.cu
- Parallel Implementation using Vertex-parallel Methodmain_vertex_parallel-serial.cu
serial.cc
- Serial implementationg_generator.cpp
- Random Gaph Generator Our Implementationparse.py
- Convert 1 to 0 based node indexfinal_generator.cpp
- Random Gaph Generator used by the classparse.c++
- Parse output from final_generator to covert to our input format
results-common-graphs/
- Results for test for common graphs for the classresults-g-generator/
- Results for test for graphs from our graph generatorinput_format/
- Contains sample input format