Skip to content

CSE-Projects/betweenness-centrality-gpu

Repository files navigation

Betweenness Centrality GPU

Betweenness Centrality for large sparse graphs on GPU using CUDA

Team:

  • Dibyadarshan Hota 16CO154
  • Omkar Prabhu 16CO233

Usage

  1. Random Graph Generator

    $ g++ g_generator.cpp
    $ ./a.out > graph10p4
    65536 65536
    
  2. Serial Implementation

    $ g++ serial.cc
    $ ./a.out < graph10p4
    
  3. Parallel Implementation using using Work-efficient Method(p_imp_1)

    $ nvcc main_work_efficient_parallel.cu
    $ ./a.out < graph10p4
    
  4. Parallel Implementation using Vertex-parallel Method (p_imp_2)

    $ nvcc main_vertex_parallel.cu
    $ ./a.out < graph10p4
    

File Structure

Code:

  • main_work_efficient_parallel.cu or p_imp_1.cu - Parallel Implementation using Work-efficient Method
  • main_vertex_parallel.cu or p_imp_2.cu - Parallel Implementation using Vertex-parallel Method
  • main_vertex_parallel-serial.cu
  • serial.cc - Serial implementation
  • g_generator.cpp - Random Gaph Generator Our Implementation
  • parse.py - Convert 1 to 0 based node index
  • final_generator.cpp - Random Gaph Generator used by the class
  • parse.c++ - Parse output from final_generator to covert to our input format

Results and Inputs:

  • results-common-graphs/ - Results for test for common graphs for the class
  • results-g-generator/ - Results for test for graphs from our graph generator
  • input_format/ - Contains sample input format

Results and Summary

Report

References

About

Betweenness Centrality for large sparse graphs using CUDA

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published