Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add python api_predict for quick start #876

Merged
merged 3 commits into from
Dec 15, 2016
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
147 changes: 147 additions & 0 deletions demo/quick_start/api_predict.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os, sys
import numpy as np
from optparse import OptionParser
from py_paddle import swig_paddle, DataProviderConverter
from paddle.trainer.PyDataProvider2 import sparse_binary_vector
from paddle.trainer.config_parser import parse_config
"""
Usage: run following command to show help message.
python api_predict.py -h
"""


class QuickStartPrediction():
def __init__(self, train_conf, dict_file, model_dir=None, label_file=None):
"""
train_conf: trainer configure.
dict_file: word dictionary file name.
model_dir: directory of model.
"""
self.train_conf = train_conf
self.dict_file = dict_file
self.word_dict = {}
self.dict_dim = self.load_dict()
self.model_dir = model_dir
if model_dir is None:
self.model_dir = os.path.dirname(train_conf)

self.label = None
if label_file is not None:
self.load_label(label_file)

conf = parse_config(train_conf, "is_predict=1")
self.network = swig_paddle.GradientMachine.createFromConfigProto(
conf.model_config)
self.network.loadParameters(self.model_dir)
input_types = [sparse_binary_vector(self.dict_dim)]
self.converter = DataProviderConverter(input_types)

def load_dict(self):
"""
Load dictionary from self.dict_file.
"""
for line_count, line in enumerate(open(self.dict_file, 'r')):
self.word_dict[line.strip().split('\t')[0]] = line_count
return len(self.word_dict)

def load_label(self, label_file):
"""
Load label.
"""
self.label = {}
for v in open(label_file, 'r'):
self.label[int(v.split('\t')[1])] = v.split('\t')[0]

def get_index(self, data):
"""
transform word into integer index according to the dictionary.
"""
words = data.strip().split()
word_slot = [self.word_dict[w] for w in words if w in self.word_dict]
return word_slot

def batch_predict(self, data_batch):
input = self.converter(data_batch)
output = self.network.forwardTest(input)
prob = output[0]["id"].tolist()
print("predicting labels is:")
print prob


def option_parser():
usage = "python predict.py -n config -w model_dir -d dictionary -i input_file "
parser = OptionParser(usage="usage: %s [options]" % usage)
parser.add_option(
"-n",
"--tconf",
action="store",
dest="train_conf",
help="network config")
parser.add_option(
"-d",
"--dict",
action="store",
dest="dict_file",
help="dictionary file")
parser.add_option(
"-b",
"--label",
action="store",
dest="label",
default=None,
help="dictionary file")
parser.add_option(
"-c",
"--batch_size",
type="int",
action="store",
dest="batch_size",
default=1,
help="the batch size for prediction")
parser.add_option(
"-w",
"--model",
action="store",
dest="model_path",
default=None,
help="model path")
return parser.parse_args()


def main():
options, args = option_parser()
train_conf = options.train_conf
batch_size = options.batch_size
dict_file = options.dict_file
model_path = options.model_path
label = options.label
swig_paddle.initPaddle("--use_gpu=0")
predict = QuickStartPrediction(train_conf, dict_file, model_path, label)

batch = []
labels = []
for line in sys.stdin:
[label, text] = line.split("\t")
labels.append(int(label))
batch.append([predict.get_index(text)])
print("labels is:")
print labels
predict.batch_predict(batch)


if __name__ == '__main__':
main()
30 changes: 30 additions & 0 deletions demo/quick_start/api_predict.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
#!/bin/bash
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add exe flag for this file.

chmod +x api_predict.sh

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set -e

#Note the default model is pass-00002, you shold make sure the model path
#exists or change the mode path.
#only test on trainer_config.lr.py
model=output/pass-00001/
config=trainer_config.lr.py
label=data/labels.list
dict=data/dict.txt
batch_size=20
head -n$batch_size data/test.txt | python api_predict.py \
--tconf=$config\
--model=$model \
--label=$label \
--dict=$dict \
--batch_size=$batch_size