Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix hyperlinks #536

Open
wants to merge 1 commit into
base: release_v1.1
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README_cn.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ PaddleTS 是一个易用的深度时序建模的Python库,它基于飞桨深

* 🔥 飞桨低代码开发工具PaddleX,依托于PaddleTS的先进技术,支持时序分析领域的低代码全流程开发能力
* 🎨 [**模型丰富一键调用**](docs/paddlex/quick_start.md):将时序预测、时序异常检测和时序分类涉及的**13个模型**整合为3条模型产线,通过极简的**Python API一键调用**,快速体验模型效果。此外,同一套API,也支持图像分类、图像分割、目标检测、文本图像智能分析、通用OCR等共计**200+模型**,形成20+单功能模块,方便开发者进行**模型组合使用**。
* 🚀 [**提高效率降低门槛**](docs/paddlex/overview.md):提供基于**统一命令**和**图形界面**两种方式,实现模型简洁高效的使用、组合与定制。支持**高性能部署、服务化部署和端侧部署**等多种部署方式。此外,对于各种主流硬件如**英伟达GPU、昆仑芯、昇腾、寒武纪和海光**等,进行模型开发时,都可以**无缝切换**。
* 🚀 [**提高效率降低门槛**](docs/paddlex/overview.md):提供基于**统一命令**和**图形界面**两种方式,实现模型简洁高效的使用、组合与定制。支持**高性能推理、服务化部署和端侧部署**等多种部署方式。此外,对于各种主流硬件如**英伟达GPU、昆仑芯、昇腾、寒武纪和海光**等,进行模型开发时,都可以**无缝切换**。

* 🔥 增加7个时序预测前沿算法[**DLinear、NLinear、RLinear、Nonstationary、PatchTST、TiDE、TimesNet**](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/time_series_modules/time_series_forecasting.md),5个时序异常检测前沿算法[**AutoEncoder_ad、DLinear_ad、Nonstationary_ad、PatchTST_ad、TimesNet_ad**](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/time_series_modules/time_series_anomaly_detection.md)和1个时序分类算法[**TimesNet_cls**](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/time_series_modules/time_series_classification.md)。

Expand Down
2 changes: 1 addition & 1 deletion docs/paddlex/overview.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@

## 2. 时序分析相关能力支持

PaddleX中时序分析相关的3条产线均支持本地**快速推理**,部分产线支持**在线体验**,您可以快速体验各个产线的预训练模型效果,如果您对产线的预训练模型效果满意,可以直接对产线进行[高性能部署](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/high_performance_deploy.md)/[服务化部署](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/service_deploy.md),如果不满意,您也可以使用产线的**二次开发**能力,提升效果。完整的产线开发流程请参考[PaddleX产线使用概览](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/pipeline_develop_guide.md)或各产线使用教程。
PaddleX中时序分析相关的3条产线均支持本地**快速推理**,部分产线支持**在线体验**,您可以快速体验各个产线的预训练模型效果,如果您对产线的预训练模型效果满意,可以直接对产线进行[高性能推理](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/high_performance_inference.md)/[服务化部署](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/service_deploy.md),如果不满意,您也可以使用产线的**二次开发**能力,提升效果。完整的产线开发流程请参考[PaddleX产线使用概览](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/pipeline_develop_guide.md)或各产线使用教程。

此外,PaddleX为开发者提供了基于[云端图形化开发界面](https://aistudio.baidu.com/pipeline/mine)的全流程开发工具, 详细请参考[教程《零门槛开发产业级AI模型》](https://aistudio.baidu.com/practical/introduce/546656605663301)

Expand Down
2 changes: 1 addition & 1 deletion docs/paddlex/quick_start.md
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ date

### 📝 Python脚本使用

几行代码即可完成产线的快速推理,以时序分类产线为例:
使用 [测试文件](https://paddle-model-ecology.bj.bcebos.com/paddlex/ts/demo_ts/ts_cls.csv),并将 `predict()` 替换为本地路径几行代码即可完成产线的快速推理,以时序分类产线为例:
```python
from paddlex import create_pipeline

Expand Down