Skip to content

Official repository of the ACL 2024 paper "Guardians of the Machine Translation Meta-Evaluation: Sentinel Metrics Fall In!".

License

Notifications You must be signed in to change notification settings

SapienzaNLP/guardians-mt-eval

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🛡️ Guardians of the Machine Translation Meta-Evaluation:
Sentinel Metrics Fall In!

Conference Paper License: CC BY-NC-SA 4.0

Hugging Face Collection PyTorch Lightning Python 3.10+ Code style: black

Setup

The code in this repo requires Python 3.10 or higher. We recommend creating a new conda environment as follows:

conda create -n guardians-mt-eval python=3.10
conda activate guardians-mt-eval
pip install --upgrade pip
pip install -e .

Data

We trained the sentinel metrics using the Direct Assessments (DA) and Multidimensional Quality Metrics (MQM) human annotations downloaded from the COMET Github repository.

Models

We trained the following sentinel metrics:

HF Model Name Input Training Data
sapienzanlp/sentinel-src-da Source text DA WMT17-20
sapienzanlp/sentinel-src-mqm Source text DA WMT17-20 + MQM WMT20-22
sapienzanlp/sentinel-cand-da Candidate translation DA WMT17-20
sapienzanlp/sentinel-cand-mqm Candidate translation DA WMT17-20 + MQM WMT20-22
sapienzanlp/sentinel-ref-da Reference translation DA WMT17-20
sapienzanlp/sentinel-ref-mqm Reference translation DA WMT17-20 + MQM WMT20-22

All metrics are based on XLM-RoBERTa large. All MQM sentinel metrics are further fine-tuned on MQM data starting from the DA-based sentinel metrics. All metrics can be found on 🤗 Hugging Face.

CLI

Except for sentinel-metric-train, all CLI commands included within this package require cloning and installing our fork of the Google WMT Metrics evaluation repository. To do this, execute the following commands:

git clone https://github.com/prosho-97/mt-metrics-eval.git
cd mt-metrics-eval
pip install .

Then, download the WMT data following the instructions in the Downloading the data section of the README.

sentinel-metric-score

You can use the sentinel-metric-score command to score translations with our metrics. For example, to use a SENTINELCAND metric:

echo -e 'Today, I consider myself the luckiest man on the face of the earth.\nI'"'"'m walking here! I'"'"'m walking here!' > sys1.txt
echo -e 'Today, I consider myself the lucky man\nI'"'"'m walking here.' > sys2.txt
sentinel-metric-score --sentinel-metric-model-name sapienzanlp/sentinel-cand-mqm -t sys1.txt sys2.txt

Output:

# input source sentences: 0     # input candidate translations: 4       # input reference translations: 0.

MT system: sys1.txt     Segment idx: 0  Metric segment score: 0.4837.
MT system: sys2.txt     Segment idx: 0  Metric segment score: 0.4722.
MT system: sys1.txt     Segment idx: 1  Metric segment score: 0.0965.
MT system: sys2.txt     Segment idx: 1  Metric segment score: 0.2735.

MT system: sys1.txt     Metric system score: 0.2901.
MT system: sys2.txt     Metric system score: 0.3729.

For a SENTINELSRC metric instead:

echo -e "本文件按照 GB/T 1.1 一 202 久标准化工作导则第工部分:标准化文件的结构和起草规则的规定起惠。\n增加了本文件适用对象(见第 1 章)," > src.txt
sentinel-metric-score --sentinel-metric-model-name sapienzanlp/sentinel-src-mqm -s src.txt

Output:

# input source sentences: 2     # input candidate translations: 0       # input reference translations: 0.

MT system: SOURCE       Segment idx: 0  Metric segment score: 0.1376.
MT system: SOURCE       Segment idx: 1  Metric segment score: 0.5106.

MT system: SOURCE       Metric system score: 0.3241.

You can also score data samples from the test sets of the WMT Metrics Shared Tasks. For example:

sentinel-metric-score \
  --sentinel-metric-model-name sapienzanlp/sentinel-cand-mqm \
  --batch-size 128 \
  --testset-name wmt23 \
  --lp zh-en \
  --ref-to-use refA \
  --include-human \
  --include-outliers \
  --include-ref-to-use \
  --only-system \
  --out-path data/metrics_results/metrics_outputs/wmt23/zh-en/SENTINEL_CAND_MQM 

Output:

lp = zh-en.                                                                                                                                                                                                         
# segs = 1976.                                                                                                                                                                                                      
# systems = 17.                                                                                                                                                                                                     
# metrics = 0.                                                                                                                                                                                                      
Std annotation type = mqm.                                                                                                                                                                                          
# refs = 2.                                                                                                                                                                                                         
std ref = refA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
                                                                                                                                                                                                                    
# MT systems to score in wmt23 for zh-en lp = 17.                                                                                                                                                                   
No domain is specified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
                                                                                                                                                                                                                    
# input source sentences: 1976  # input candidate translations: 33592   # input reference translations: 1976.

MT system: ONLINE-M     Metric system score: -0.0576.
MT system: ONLINE-Y     Metric system score: 0.0913.
MT system: NLLB_MBR_BLEU        Metric system score: 0.0725.
MT system: Yishu        Metric system score: 0.0703.
MT system: ONLINE-B     Metric system score: 0.066.
MT system: ONLINE-G     Metric system score: 0.0441.
MT system: refA Metric system score: -0.0193.
MT system: IOL_Research Metric system score: -0.0121.
MT system: ANVITA       Metric system score: 0.0603.
MT system: HW-TSC       Metric system score: 0.0866.
MT system: GPT4-5shot   Metric system score: 0.1905.
MT system: ONLINE-W     Metric system score: -0.0017.
MT system: synthetic_ref        Metric system score: 0.0667.
MT system: Lan-BridgeMT Metric system score: 0.1543.
MT system: ONLINE-A     Metric system score: 0.0231.
MT system: NLLB_Greedy  Metric system score: 0.0836.
MT system: ZengHuiMT    Metric system score: -0.0446.

--out-path points to the directory where the segment and system scores returned by the metric will be saved (seg_scores.pickle and sys_scores.pickle). Furthermore, you can provide the path to the model checkpoint using --sentinel-metric-model-checkpoint-path instead of specifying the Hugging Face model name with --sentinel-metric-model-name. Output scores can also be saved to a json file using the --to-json argument. Additionally, this command supports COMET metrics, which can be used with --comet-metric-model-name or --comet-metric-model-checkpoint-path argument.

For a complete description of the command (including also scoring csv data and limiting the evaluation to some specific WMT domain), you can use the help argument:

sentinel-metric-score --help

sentinel-metric-compute-wmt23-ranking

The sentinel-metric-compute-wmt23-ranking command computes the WMT23 metrics ranking. For example, to compute the segment-level metrics ranking:

sentinel-metric-compute-wmt23-ranking \
  --metrics-to-evaluate-info-filepath data/metrics_results/metrics_info/metrics_info_for_ranking.tsv \
  --metrics-outputs-path data/metrics_results/metrics_outputs/wmt23 \
  --k 0 \
  --only-seg-level \
  > data/metrics_results/metrics_rankings/seg_level_wmt23_final_ranking.txt

To group-by-item (Segment Grouping in the paper) when computing the segment-level Pearson correlation, use --item-for-seg-level-pearson. The output is located in data/metrics_results/metrics_rankings/item_group_seg_level_wmt23_final_ranking.txt. You also have the option to limit the segment-level ranking to using the Pearson correlation only, excluding the accuracy measure introduced by Deutsch et al. (2023). To do this, use the --only-pearson flag. The output files will be located at data/metrics_results/metrics_rankings/only_pearson_seg_level_wmt23_final_ranking.txt and data/metrics_results/metrics_rankings/only_item_group_pearson_seg_level_wmt23_final_ranking.txt.

You can add other MT metrics to this comparison by creating new folders in data/metrics_results/metrics_outputs/wmt23 for each language pair, containing their segment-level and system-level scores (check how the seg_scores.pickle and sys_scores.pickle files are created in sentinel_metric/cli/score.py). To do this, you also have to include their info in the data/metrics_results/metrics_info/metrics_info_for_ranking.tsv file, specifying the metric name, the name of the folder containing its scores, and what gold references have been employed (or src if the metric is reference-free).

For a complete description of this command, execute:

sentinel-metric-compute-wmt23-ranking --help

sentinel-metric-compute-wmt-corrs

The sentinel-metric-compute-wmt-corrs command can computes the metrics rankings on WMT for all possible combinations of correlation function and grouping strategy in a given language pair. For example, for zh-en language direction, in WMT23, you can use the following command:

sentinel-metric-compute-wmt-corrs \
  --metrics-to-evaluate-info-filepath data/metrics_results/metrics_info/metrics_info_for_wmt_corrs.tsv \
  --testset-name wmt23 \
  --lp zh-en \
  --ref-to-use refA \
  --primary-metrics \
  --k 0 \
  > data/metrics_results/wmt_corrs/wmt23/zh-en.txt 

Similar to the previous command, you can include additional MT metrics by creating the necessary folders for the desired language pair and adding their info in the data/metrics_results/metrics_info/metrics_info_for_wmt_corrs.tsv file. For each new metric, you have to specify its name, whether it is reference-free, and the path to the folder containing its scores.

For a complete description of the command, execute:

sentinel-metric-compute-wmt-corrs --help

sentinel-metric-compute-corrs-matrix

The sentinel-metric-compute-corrs-matrix command computes the correlations matrix for MT metrics in a given language pair, similar to the ones in the Appendix of our paper. To use it, two additional packages are required:

pip install matplotlib>=3.9.1 seaborn>=0.13.2

Then, considering zh-en language direction in WMT23 as an example, you can execute the following command:

sentinel-metric-compute-corrs-matrix \
  --metrics-to-evaluate-info-filepath data/metrics_results/metrics_info/metrics_info_for_corrs_matrix.tsv \
  --testset-name wmt23 \
  --lp zh-en \
  --ref-to-use refA \
  --out-file data/metrics_results/corr_matrices/wmt23/zh-en.pdf

To specify which MT metrics to include in the correlations matrix, you can edit data/metrics_results/metrics_info/metrics_info_for_corrs_matrix.tsv, specifying each metric's name, whether it is reference-free, and the path to its scores (None if already included in WMT).

For a complete description of this command, execute:

sentinel-metric-compute-corrs-matrix --help

sentinel-metric-train

The sentinel-metric-train trains a new sentinel metric:

sentinel-metric-train --cfg configs/models/sentinel_regression_metric_model.yaml --wandb-logger-entity WANDB_ENTITY

Edit the files in the configs directory to customize the training process. You can also start the training from a given model checkpoint (--load-from-checkpoint).

For a complete description of the command, execute:

sentinel-metric-train --help

Sentinel metrics usage within Python:

from sentinel_metric import download_model, load_from_checkpoint

model_path = download_model("sapienzanlp/sentinel-cand-mqm")
model = load_from_checkpoint(model_path)

data = [
    {"mt": "This is a candidate translation."},
    {"mt": "This is another candidate translation."}
]

output = model.predict(data, batch_size=8, gpus=1)

Output:

# Segment scores
>>> output.scores
[0.347846657037735, 0.22583423554897308]

# System score
>>> output.system_score
0.28684044629335403

Cite this work

This work has been published at ACL 2024 (Main Conference). If you use any part, please consider citing our paper as follows:

@inproceedings{perrella-etal-2024-guardians,
    title = "Guardians of the Machine Translation Meta-Evaluation: Sentinel Metrics Fall In!",
    author = "Perrella, Stefano  and Proietti, Lorenzo  and Scir{\`e}, Alessandro  and Barba, Edoardo  and Navigli, Roberto",
    editor = "Ku, Lun-Wei  and Martins, Andre  and Srikumar, Vivek",
    booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = aug,
    year = "2024",
    address = "Bangkok, Thailand", publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.acl-long.856",
    pages = "16216--16244",
}

License

This work is licensed under Creative Commons Attribution-ShareAlike-NonCommercial 4.0.