This repo summarizes several demos from Flink Forward Asia 2021.
- The environemnt for build needs docker engine installed
- have docker-compose installed
- The environemnt for build needs GNU
make
> 3.8 installed - The environemnt for build needs
bash
shell - An available k8s cluster (e.g. k8s cluster in Docker Desktop), or using kind to setup local k8s cluster in docker containers
- k8s related cli installed
kubectl
helm
(>= 3.0)
On Linux:
curl -Lo ./kind "https://kind.sigs.k8s.io/dl/v0.11.1/kind-$(uname)-amd64"
chmod +x ./kind
mv ./kind /some-dir-in-your-PATH/kind
On macOS via Homebrew:
brew install kind
make local-k8s
make local-k8s-undeploy
kubectl get node
cd aiflow/flink-ai-flow
# build dockerimages
make docker-images
# setup dev cluster with docker-compose
make dev-deploy
# then docker login to dev container
docker exec -it flink-ai-flow-dev bash
# start server in container
start-all-aiflow-server
# run example
python examples/sklearn_examples/workflows/batch_train_stream_predict/batch_train_stream_predict.py
# check result on webui: localhost:8000 or airflow: localhost:8080
# check output under examples/sklearn_examples/workflows/batch_train_stream_predict/
# cleanup
make dev-undeploy