Reference paper: https://arxiv.org/abs/2001.04296
Auther's implementation: https://github.com/1Konny/idgan.git
- Data Set: CelebA data set is used for model training
- Stage 1: VAE is trained for 1e6 iteration
- Stage 2: Resnet Generator & Discriminator are trained for 3e5 iteration
- trained on 1xA100 (40 GB SXM4) for 28hrs
/d_chkpt
- Folder where 'Discriminator' model check points to be savedgetModelPkl.py
: used to download final check point for the trained model. Command:python getModelPkl.py
/g_chkpt
- Folder where 'Generator' model check points to be savedgetModelPkl.py
: used to download final check point for the trained model. Command:python getModelPkl.py
/vae_chkpt
- Folder where 'VAE' model check points to be savedgetModelPkl.py
: used to download final check point for the trained model. Command:python getModelPkl.py
/outputs
- Folder where the generated images are saved/ID-GAN.ipynb
- Jupyter notebook for the paper implementation./requirements.txt
- Needed python libraries