Skip to content

Gene expression-based prognostic model for predicting post-autologous stem-cell transplantation outcomes

License

Notifications You must be signed in to change notification settings

tinyheero/RHL30

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RHL30

An R Package for the RHL30 prognostic predictor. The predictor is a gene expression-based prognostic model for predicting post-autologous stem-cell transplantation outcomes. It designed to be used on RHL30 NanoString expression count data on relapsed Hodgkin lymphoma (RHL) samples.

The predictor was published at:

Chan FC*, Mottok A*, et al. Prognostic Model to Predict Post-Autologous Stem-Cell Transplantation Outcomes in Classical Hodgkin Lymphoma. J Clin Oncol JCO2017727925 (2017) doi:10.1200/JCO.2017.72.7925. *Contributed equally to this work.

How to Install

To install this package, you need to first have the package devtools installed, then you run:

devtools::install_github("tinyheero/RHL30")

How to use

We will be using the BCCA RHL30 training cohort from the paper as an example of how to generate RHL30 predictor score. The following steps will reproduce the RHL30 scores from the paper.

First, let’s load the RHL30 package and the RHL30 model:

library("RHL30")
library("dplyr")
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
rhl30_model_df <- get_rhl30_model_coef_df()
rhl30_model_df
#> # A tibble: 30 x 4
#>    gene_name refseq_mrna_id gene_type   coefficient
#>    <chr>     <chr>          <chr>             <dbl>
#>  1 ACTB      NM_001101.2    housekeeper          NA
#>  2 ALAS1     NM_000688.4    housekeeper          NA
#>  3 CLTC      NM_004859.2    housekeeper          NA
#>  4 GAPDH     NM_002046.3    housekeeper          NA
#>  5 GUSB      NM_000181.1    housekeeper          NA
#>  6 PGK1      NM_000291.2    housekeeper          NA
#>  7 POLR2A    NM_000937.2    housekeeper          NA
#>  8 RPL19     NM_000981.3    housekeeper          NA
#>  9 RPLP0     NM_001002.3    housekeeper          NA
#> 10 SDHA      NM_004168.1    housekeeper          NA
#> # … with 20 more rows

The model contains a total of 30 genes:

  • 18 genes that make the model
  • 12 housekeeper genes that are used to normalize the data

The next step is to load the expression data you want to generate RHL30 scores on. The expression data should be a tab-separated values file. The first line should be a header line with gene_name as the first column followed by the sample identifiers. Each row should then be the name of the gene and then the respectively raw expression values for each sample.

The expression data of the BCCA RHL30 training cohort is provided as an example. Let’s load that data:

exprs_file <- 
  system.file("extdata", "bcca_rhl_rhl30_gene_exprs_mat.tsv", package = "RHL30")
exprs_mat <- load_exprs_mat(exprs_file)
dim(exprs_mat)
#> [1] 30 68

The expression data contains the 30 genes (rows) and 68 samples (columns). Next we calculate the normalizer values (geometric mean of the 12 housekeepers) for each sample:

hk_genes <- 
  filter(rhl30_model_df, gene_type == "housekeeper") %>%
  pull("gene_name")

sample_normalizer_values <- get_sample_normalizer_value(exprs_mat, hk_genes)
#> [get_normalizer]: Generating the geometric mean of housekeeper genes

In the paper, a threshold of 35 was set to exclude poor quality samples. This was done because very low normalizer values often lead to very high normalized expression values. We can apply this threshold to eliminate poor quality samples:

high_quality_samples <- 
  names(sample_normalizer_values[sample_normalizer_values > 35])
filtered_exprs_mat <- exprs_mat[, high_quality_samples]
dim(filtered_exprs_mat)
#> [1] 30 66

This eliminates 2 poor quality samples leaving us with 66 samples. Note that the sample HL1120 did not receive ASCT and thus was not reported in figure 4 of the paper. As such, the final number in figure 4 is 65 samples.

Let’s normalize our expression matrix and generate the RHL30 scores for each sample:

filtered_exprs_mat_norm <- 
  normalize_exprs_mat(filtered_exprs_mat, sample_normalizer_values)
#> [normalize_exprs_mat]: Normalizing the expression exprs_matrix
#> [normalize_exprs_mat]: Log2 transforming
rhl30_df <- get_rhl30_scores_df(filtered_exprs_mat_norm, rhl30_model_df)
head(rhl30_df)
#> # A tibble: 6 x 2
#>   sample_id score
#>   <chr>     <dbl>
#> 1 HL1013    10.3 
#> 2 HL1014    10.5 
#> 3 HL1015     9.77
#> 4 HL1017     9.80
#> 5 HL1018    11.3 
#> 6 HL1019     9.70

R Session

devtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#>  setting  value                       
#>  version  R version 3.6.2 (2019-12-12)
#>  os       macOS Sierra 10.12.6        
#>  system   x86_64, darwin16.7.0        
#>  ui       unknown                     
#>  language (EN)                        
#>  collate  en_GB.UTF-8                 
#>  ctype    en_GB.UTF-8                 
#>  tz       Europe/London               
#>  date     2020-02-29                  
#> 
#> ─ Packages ───────────────────────────────────────────────────────────────────
#>  package     * version    date       lib source                          
#>  assertthat    0.2.1      2019-03-21 [1] CRAN (R 3.6.2)                  
#>  backports     1.1.5      2019-10-02 [1] CRAN (R 3.6.2)                  
#>  callr         3.4.2      2020-02-12 [1] CRAN (R 3.6.2)                  
#>  cli           2.0.1      2020-01-08 [1] CRAN (R 3.6.2)                  
#>  crayon        1.3.4      2017-09-16 [1] CRAN (R 3.6.2)                  
#>  desc          1.2.0      2018-05-01 [1] CRAN (R 3.6.2)                  
#>  devtools      2.2.2      2020-02-17 [1] CRAN (R 3.6.2)                  
#>  digest        0.6.25     2020-02-23 [1] CRAN (R 3.6.2)                  
#>  dplyr       * 0.8.4      2020-01-31 [1] CRAN (R 3.6.2)                  
#>  ellipsis      0.3.0      2019-09-20 [1] CRAN (R 3.6.2)                  
#>  evaluate      0.14       2019-05-28 [1] CRAN (R 3.6.2)                  
#>  fansi         0.4.1      2020-01-08 [1] CRAN (R 3.6.2)                  
#>  fs            1.3.1      2019-05-06 [1] CRAN (R 3.6.2)                  
#>  glue          1.3.1      2019-03-12 [1] CRAN (R 3.6.2)                  
#>  hms           0.5.3      2020-01-08 [1] CRAN (R 3.6.2)                  
#>  htmltools     0.4.0      2019-10-04 [1] CRAN (R 3.6.2)                  
#>  knitr       * 1.28       2020-02-06 [1] CRAN (R 3.6.2)                  
#>  magrittr      1.5        2014-11-22 [1] CRAN (R 3.6.2)                  
#>  memoise       1.1.0      2017-04-21 [1] CRAN (R 3.6.2)                  
#>  pillar        1.4.3      2019-12-20 [1] CRAN (R 3.6.2)                  
#>  pkgbuild      1.0.6      2019-10-09 [1] CRAN (R 3.6.2)                  
#>  pkgconfig     2.0.3      2019-09-22 [1] CRAN (R 3.6.2)                  
#>  pkgload       1.0.2      2018-10-29 [1] CRAN (R 3.6.2)                  
#>  prettyunits   1.1.1      2020-01-24 [1] CRAN (R 3.6.2)                  
#>  processx      3.4.2      2020-02-09 [1] CRAN (R 3.6.2)                  
#>  ps            1.3.2      2020-02-13 [1] CRAN (R 3.6.2)                  
#>  purrr         0.3.3      2019-10-18 [1] CRAN (R 3.6.2)                  
#>  R6            2.4.1      2019-11-12 [1] CRAN (R 3.6.2)                  
#>  Rcpp          1.0.3      2019-11-08 [1] CRAN (R 3.6.2)                  
#>  readr         1.3.1      2018-12-21 [1] CRAN (R 3.6.2)                  
#>  remotes       2.1.1      2020-02-15 [1] CRAN (R 3.6.2)                  
#>  RHL30       * 0.0.0.9000 2020-02-29 [1] Github (tinyheero/RHL30@2d9e3bc)
#>  rlang         0.4.4      2020-01-28 [1] CRAN (R 3.6.2)                  
#>  rmarkdown     2.1        2020-01-20 [1] CRAN (R 3.6.2)                  
#>  rprojroot     1.3-2      2018-01-03 [1] CRAN (R 3.6.2)                  
#>  sessioninfo   1.1.1      2018-11-05 [1] CRAN (R 3.6.2)                  
#>  stringi       1.4.6      2020-02-17 [1] CRAN (R 3.6.2)                  
#>  stringr       1.4.0      2019-02-10 [1] CRAN (R 3.6.2)                  
#>  testthat      2.3.1      2019-12-01 [1] CRAN (R 3.6.2)                  
#>  tibble        2.1.3      2019-06-06 [1] CRAN (R 3.6.2)                  
#>  tidyselect    1.0.0      2020-01-27 [1] CRAN (R 3.6.2)                  
#>  usethis       1.5.1      2019-07-04 [1] CRAN (R 3.6.2)                  
#>  utf8          1.1.4      2018-05-24 [1] CRAN (R 3.6.2)                  
#>  vctrs         0.2.3      2020-02-20 [1] CRAN (R 3.6.2)                  
#>  withr         2.1.2      2018-03-15 [1] CRAN (R 3.6.2)                  
#>  xfun          0.12       2020-01-13 [1] CRAN (R 3.6.2)                  
#>  yaml          2.2.1      2020-02-01 [1] CRAN (R 3.6.2)                  
#> 
#> [1] /usr/local/Cellar/r/3.6.2/lib/R/library

About

Gene expression-based prognostic model for predicting post-autologous stem-cell transplantation outcomes

Resources

License

Stars

Watchers

Forks

Packages

No packages published